首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fibril deposit formation of amyloid β-protein (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, which have been found in soluble brain extracts of AD patients, rather than to insoluble fibers. Here we report a study of the toxicity of two distinct forms of recombinant Aβ small oligomers and fibrillar aggregates to simulate the action of diffusible Aβ oligomers and amyloid plaques on neuronal cells. Different techniques, including dynamic light scattering, fluorescence, and scanning electron microscopy, have been used to characterize the two forms of Aβ. Under similar conditions and comparable incubation times in neuroblastoma LAN5 cell cultures, oligomeric species obtained from Aβ peptide are more toxic than fibrillar aggregates. Both oligomers and aggregates are able to induce neurodegeneration by apoptosis activation, as demonstrated by TUNEL assay and Hoechst staining assays. Moreover, we show that aggregates induce apoptosis by caspase 8 activation (extrinsic pathway), whereas oligomers induce apoptosis principally by caspase 9 activation (intrinsic pathway). These results are confirmed by cytochrome c release, almost exclusively detected in the cytosolic fraction of LAN5 cells treated with oligomers. These findings indicate an active and direct interaction between oligomers and the cellular membrane, and are consistent with internalization of the oligomeric species into the cytosol.  相似文献   

3.
Using a coarse-grained lipid and peptide model, we show that the free energy stabilization of amyloid-β in heterogeneous lipid membranes is predicted to have a dependence on asymmetric distributions of cholesterol compositions across the membrane leaflets. We find that a highly asymmetric cholesterol distribution that is depleted on the exofacial leaflet but enhanced on the cytofacial leaflet of the model lipid membrane thermodynamically favors membrane retention of a fully embedded Aβ peptide. However, in the case of cholesterol redistribution that increases concentration of cholesterol on the exofacial layer, typical of aging or Alzheimer’s disease, the free energy favors peptide extrusion of the highly reactive N-terminus into the extracellular space that may be vulnerable to aggregation, oligomerization, or deleterious oxidative reactivity.  相似文献   

4.
Although the oligomers formed by Aβ peptides appear to be the primary cytotoxic species in Alzheimer's disease, detailed information about their structures appears to be lacking. In this article, we use exhaustive replica exchange molecular dynamics and an implicit solvent united-atom model to study the structural properties of Aβ monomers, dimers, and tetramers. Our analysis suggests that the conformational ensembles of Aβ dimers and tetramers are very similar, but sharply distinct from those sampled by the monomers. The key conformational difference between monomers and oligomers is the formation of β-structure in the oligomers occurring together with the loss of intrapeptide interactions and helix structure. Our simulations indicate that, independent of oligomer order, the Aβ aggregation interface is largely confined to the sequence region 10-23, which forms the bulk of interpeptide interactions. We show that the fractions of β structure computed in our simulations and measured experimentally are in good agreement.  相似文献   

5.
6.
Using homonuclear 1H NOESY spectra, with chemical shifts, 3JHNHα scalar couplings, residual dipolar couplings, and 1H-15N NOEs, we have optimized and validated the conformational ensembles of the amyloid-β 1–40 (Aβ40) and amyloid-β 1–42 (Aβ42) peptides generated by molecular dynamics simulations. We find that both peptides have a diverse set of secondary structure elements including turns, helices, and antiparallel and parallel β-strands. The most significant difference in the structural ensembles of the two peptides is the type of β-hairpins and β-strands they populate. We find that Aβ42 forms a major antiparallel β-hairpin involving the central hydrophobic cluster residues (16–21) with residues 29–36, compatible with known amyloid fibril forming regions, whereas Aβ40 forms an alternative but less populated antiparallel β-hairpin between the central hydrophobic cluster and residues 9–13, that sometimes forms a β-sheet by association with residues 35–37. Furthermore, we show that the two additional C-terminal residues of Aβ42, in particular Ile-41, directly control the differences in the β-strand content found between the Aβ40 and Aβ42 structural ensembles. Integrating the experimental and theoretical evidence accumulated over the last decade, it is now possible to present monomeric structural ensembles of Aβ40 and Aβ42 consistent with available information that produce a plausible molecular basis for why Aβ42 exhibits greater fibrillization rates than Aβ40.  相似文献   

7.
Di Pan 《Biophysical journal》2010,99(1):208-217
N-glycosylation of the I-like domain of β1 integrin plays an essential role in integrin structure and function, and the altered sialylation of β1 integrin regulates β1 integrin binding to fibronectin. However, the structural basis underlying the effect of altered sialylation of the β1 I-like domain on β1 integrin binding to fibronectin remains largely unknown. In this study, we used a combination of molecular dynamics simulations and binding free energy analyses to investigate changes in binding thermodynamics and in conformation of the glycosylated β1 I-like domain-FN-III9-10 complex caused by altered sialylation of the β1 I-like domain. Binding free energy analyses showed that desialylation of β1 I-like domain increased β1 integrin binding to fibronectin, consistent with experimental results. Interaction analyses showed that altered sialylation of the β1 I-like domain resulted in significant changes in the interaction of the N-glycans of the I-like domain with both the I-like domain and fibronectin, and these changes could directly affect the allosteric regulation of the interaction between the I-like domain and fibronectin. Altered sialylation of the β1 I-like domain caused significant conformational changes in key functional sites of both the β1 I-like domain and fibronectin. In addition, altered sialylation of the β1 I-like domain resulted in changes in the degree of correlated motions between residues in the I-like domain and residues in fibronectin, and in the degree of motion changes in fibronectin, which could affect β1 integrin binding to fibronectin. We believe results from this study provide thermodynamic and structural evidence for a role of altered sialylation of β1 integrin in regulating β1 integrin binding to fibronectin and it's induced cellular activities.  相似文献   

8.
The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.  相似文献   

9.
The øX174 DNA pilot protein H forms an oligomeric DNA-translocating tube during penetration. However, monomers are incorporated into 12 pentameric assembly intermediates, which become the capsid''s icosahedral vertices. The protein''s N terminus, a predicted transmembrane helix, is not represented in the crystal structure. To investigate its functions, a series of absolute and conditional lethal mutations were generated. The absolute lethal proteins, a deletion and a triple substitution, were efficiently incorporated into virus-like particles lacking infectivity. The conditional lethal mutants, bearing cold-sensitive (cs) and temperature-sensitive (ts) point mutations, were more amenable to further analyses. Viable particles containing the mutant protein can be generated at the permissive temperature and subsequently analyzed at the restrictive temperature. The characterized cs defect directly affected host cell attachment. In contrast, ts defects were manifested during morphogenesis. Particles synthesized at permissive temperature were indistinguishable from wild-type particles in their ability to recognize host cells and deliver DNA. One mutation conferred an atypical ts synthesis phenotype. Although the mutant protein was efficiently incorporated into virus-like particles at elevated temperature, the progeny appeared to be kinetically trapped in a temperature-independent, uninfectious state. Thus, substitutions in the N terminus can lead to H protein misincorporation, albeit at wild-type levels, and subsequently affect particle function. All mutants exhibited recessive phenotypes, i.e., rescued by the presence of the wild-type H protein. Thus, mixed H protein oligomers are functional during DNA delivery. Recessive and dominant phenotypes may temporally approximate H protein functions, occurring before or after oligomerization has gone to completion.  相似文献   

10.
A membrane preparation from tobacco (Nicotiana tabacum L.) cells contains at least one enzyme that is capable of transferring the methyl group from S-adenosyl-methionine (SAM) to the C6 carboxyl of homogalacturonan present in the membranes. This enzyme is named homogalacturonan-methyltransferase (HGA-MT) to distinguish it from methyltransferases that catalyze methyletherification of the pectic polysaccharides rhamnogalacturonan I or rhamnogalacturonan II. A trichloroacetic acid precipitation assay was used to measure HGA-MT activity, because published procedures to recover pectic polysaccharides via ethanol or chloroform:methanol precipitation lead to high and variable background radioactivity in the product pellet. Attempts to reduce the incorporation of the 14C-methyl group from SAM into pectin by the addition of the alternative methyl donor 5-methyltetrahydrofolate were unsuccessful, supporting the role of SAM as the authentic methyl donor for HGA-MT. The pH optimum for HGA-MT in membranes was 7.8, the apparent Michaelis constant for SAM was 38 μm, and the maximum initial velocity was 0.81 pkat mg−1 protein. At least 59% of the radiolabeled product was judged to be methylesterified homogalacturonan, based on the release of radioactivity from the product after a mild base treatment and via enzymatic hydrolysis by a purified pectin methylesterase. The released radioactivity eluted with a retention time identical to that of methanol upon fractionation over an organic acid column. Cleavage of the radiolabeled product by endopolygalacturonase into fragments that migrated as small oligomers of HGA during thin-layer chromatography, and the fact that HGA-MT activity in the membranes is stimulated by uridine 5′-diphosphate galacturonic acid, a substrate for HGA synthesis, confirms that the bulk of the product recovered from tobacco membranes incubated with SAM is methylesterified HGA.  相似文献   

11.
The abnormal self-assembly of a number of proteins or peptides is a hallmark of >20 amyloidogenic diseases. Recent studies suggest that the pathology of amyloidogenesis can be attributed primarily to cytotoxic, soluble, intermediate oligomeric species rather than to mature amyloid fibrils. Despite the lack of available structural information regarding these transient species, many therapeutic efforts have focused on inhibiting the formation of these aggregates. One of the most successful approaches has been to use small molecules, many of which have been found to inhibit toxic species with high efficacy. A significant issue that remains to be resolved is the mechanism underlying the inhibitory effects of these molecules. In this article, we present extensive replica-exchange molecular dynamics simulations to study the early aggregation of the human islet amyloid polypeptide segment 22–27 in the presence and absence of the small-molecule inhibitor resveratrol. The simulations indicate that aggregation of these peptides was hindered by resveratrol via a mechanism of blocking the lateral growth of a single-layered β-sheet oligomer (rather than preventing growth by elongation along the fibril axis). Intersheet side-chain stacking, especially stacking of the aromatic rings, was blocked by the presence of resveratrol molecules, and the overall aggregation level was reduced.  相似文献   

12.
The furanditerpene 6α,7β-dihydroxyvouacapan-17β-oic acid (1) is a natural product biosynthesized by some species from the genus Pterodon (Leguminosae). This secondary metabolite has multiple biological activities that include anti-inflammatory, analgesic, plant growth regulatory, anti-edematogenic, photosystem II inhibitory and photosynthesis uncoupler, and antifungal properties. However, few studies on the antiproliferative profile of compound 1 and/or its derivatives have been reported up to date. Here, we describe the isolation of compound 1 from hexane extract of P. polygalaeflorus fruits as well as the semisynthesis of three lactone derivatives: 6α-hydroxyvouacapan-7β,17β-lactone (2), 6α-acetoxyvouacapan-7β,17β-lactone (3), and 6-oxovouacapan-7β,17β-lactone (4). Additionally, antiproliferative activity of these compounds against nine human cancer cell lines was investigated. Our results revealed that 6α-hydroxyvouacapan-7β,17β-lactone (2) was the most potent furanditerpene against all cancer cell lines studied. The presence of non-substituted hydroxyl group at C-6 and the presence of 7β,17β-lactone ring are important for the antiproliferative activity of these compounds.  相似文献   

13.
The effect of nonionic detergents of the n-alkyl-β-D-glucopyranoside class on the ordering of lipid bilayers and the dynamics of membrane-embedded peptides were investigated with 2H- and 31P-NMR. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was selectively deuterated at methylene segments C-2, C-7, and C-16 of the two fatty acyl chains. Two trans-membrane helices, WALP-19 and glycophorin A71-98, were synthesized with Ala-d3 in the central region of the α-helix. n-Alkyl-β-D-glucopyranosides with alkyl chains with 6, 7, 8, and 10 carbon atoms were added at increasing concentrations to the lipid membrane. The bilayer structure is retained up to a detergent/lipid molar ratio of 1:1. The insertion of the detergents leads to a selective disordering of the lipids. The headgroup region remains largely unaffected; the fatty acyl chain segments parallel to the detergent alkyl chain are only modestly disordered (10-20%), whereas lipid segments beyond the methyl terminus of the detergent show a decrease of up to 50%. The change in the bilayer order profile corresponds to an increase in bilayer entropy. Insertion of detergents into the lipid bilayers is completely entropy-driven. The entropy change accompanying lipid disorder is equivalent in magnitude to the hydrophobic effect. Ala-d3 deuterated WALP-19 and GlycA71-97 were incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine at a peptide/lipid molar ratio of 1:100 and measured above the 1,2-dimyristoyl-sn-glycero-3-phosphocholine gel/liquid-crystal phase transition. Well-resolved 2H-NMR quadrupole splittings were observed for the two trans-membrane helices, revealing a rapid rotation of the CD3 methyl rotor superimposed on an additional rotation of the whole peptide around the bilayer normal. The presence of detergent fluidizes the membrane and produces magnetic alignment of bilayer domains but does not produce essential changes in the peptide conformation or dynamics.  相似文献   

14.
Integrin αIIbβ3 is a member of the integrin family of transmembrane proteins present on the plasma membrane of platelets. Integrin αIIbβ3 is widely known to regulate the process of thrombosis via activation at its cytoplasmic side by talin and interaction with the soluble fibrinogen. It is also reported that three groups of interactions restrain integrin family members in the inactive state, including a set of salt bridges on the cytoplasmic side of the transmembrane domain of the integrin α- and β-subunits known as the inner membrane clasp, hydrophobic packing of a few transmembrane residues on the extracellular side between the α- and β-subunits that is known as the outer membrane clasp, and the key interaction group of the βA domain (located on the β-subunit head domain) with the βTD (proximal to the plasma membrane on the β-subunit). However, molecular details of this key interaction group as well as events that lead to detachment of the βTD and βA domains have remained ambiguous. In this study, we use molecular dynamics models to take a comprehensive outside-in and inside-out approach at exploring how integrin αIIbβ3 is activated. First, we show that talin’s interaction with the membrane-proximal and membrane-distal regions of integrin cytoplasmic-transmembrane domains significantly loosens the inner membrane clasp. Talin also interacts with an additional salt bridge (R734-E1006), which facilitates integrin activation through the separation of the integrin’s α- and β-subunits. The second part of our study classifies three types of interactions between RGD peptides and the extracellular domains of integrin αIIbβ3. Finally, we show that the interaction of the Arg of the RGD sequence may activate integrin via disrupting the key interaction group between K350 on the βA domain and S673/S674 on the βTD.  相似文献   

15.
The amyloid-β (Aβ) peptide is a key aggregate species in Alzheimer's disease. Although important aspects of Aβ peptide aggregation are understood, the initial stage of aggregation from monomer to oligomer is still not clear. One potential mediator of this early aggregation process is interactions of Aβ with anionic cell membranes. We used unconstrained and umbrella sampling molecular dynamics simulations to investigate interactions between the 42-amino acid Aβ peptide and model bilayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) lipids and anionic dioleoylphosphatidylserine (DOPS) lipids. Using these methods, we determined that Aβ is attracted to the surface of DPPC and DOPS bilayers over the small length scales used in these simulations. We also found supporting evidence that the charge on both the bilayer surface and the peptide affects the free energy of binding of the peptide to the bilayer surface and the distribution of the peptide on the bilayer surface. Our work demonstrates that interactions between the Aβ peptide and lipid bilayer promotes a peptide distribution on the bilayer surface that is prone to peptide-peptide interactions, which can influence the propensity of Aβ to aggregate into higher-order structures.  相似文献   

16.
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.  相似文献   

17.
The C1 domains of classical and novel PKCs mediate their diacylglycerol-dependent translocation. Using fluorescence resonance energy transfer, we studied the contribution of different negatively charged phospholipids and diacylglycerols to membrane binding. Three different C1B domains of PKCs were studied (the classical γ, and the novel δ and ?), together with different lipid mixtures containing three types of acidic phospholipids and three types of activating diacylglycerols. The results show that C1Bγ and C1B? exhibit a higher affinity to bind to vesicles containing 1-palmitoyl-2-oleoyl-sn-phosphatidic acid, 1-palmitoyl-2-oleoyl-sn-phoshatidylserine, or 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol, with C1B? being the most relevant case because its affinity for POPA-containing vesicles increased by almost two orders of magnitude. When the effect of the diacylglycerol fatty acid composition on membrane binding was studied, the C1B? domain showed the highest binding affinity to membranes containing 1-stearoyl-oleoyl-sn-glycerol or 1,2-sn-dioleoylglycerol with POPA as the acidic phospholipid. Of the three diacylglycerols used in this study, 1,2-sn-dioleoylglycerol and 1-stearoyl-oleoyl-sn-glycerol showed the highest affinities for each isoenzyme, whereas 1,2-sn-dipalmitoylglycerol; showed the lowest affinity. DSC experiments showed this to be a consequence of the nonfluid conditions of 1,2-sn-dipalmitoylglycerol;-containing systems.  相似文献   

18.
19.
Deletion of the β-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1β into antagonist activity. Conversely, circular permutations of IL-1β conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1β would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated β-strand bridging interactions within the pseudosymmetric β-trefoil fold of IL-1β highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1β. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity.  相似文献   

20.
Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Aβ17-42 oligomers with different protonation states of Glu22, as well the E22Q (Dutch) mutants. The association free energy of small β-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the β-sheet oligomers. The charge reduction of the wild-type Aβ17-42 oligomers upon protonation of the solvent-exposed Glu22 at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Aβ17-42 oligomers at neutral pH and the Dutch mutants, on the one hand, and the Aβ17-42 oligomers with protonated Glu22, on the other, may be explained by destabilization of the inter- and intrapeptide salt bridges between Asp23 and Lys28. Peculiarities in the conformational stability and the association thermodynamics for the different models of the Aβ17-42 oligomers are rationalized based on the analysis of the local physical interactions and the microscopic solvation structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号