共查询到20条相似文献,搜索用时 65 毫秒
1.
Aqueous exposure of critical residues in the selectivity region of voltage gated Na+ channels was studied by cysteine-scanning mutagenesis at three positions in each of the SS2 segments of domains III (D3)
and IV (D4) of the human heart Na+ channel. Ionic currents were modified by charged cysteine-specific methanethiosulfonate (MTS) reagents, (2-aminoethyl)methanethiosulfonate
(MTSEA+) and (2-sulfonatoethyl)methanethiosulfonate (MTSES−) in all six of the Cys-substituted channels, including Trp → Cys substitutions at homologous positions in D3 and D4 that
were predicted in secondary structure models to have buried side chains. Furthermore, in the absence of MTS modification,
each of the Cys mutants showed a reduction in tetrodotoxin (TTX) block by a factor >102. Cysteine substitution without MTS modification abolished the alkali metal ion selectivity in K1418C (D3), but not in A1720C
(the corresponding position in D4) suggesting that the lysine but not the alanine side chains contribute to selectivity even
though both were exposed. Neither position responded to MTSES− suggesting that these residues occupy either a size- or charge-restricted region of the pore. By contrast, MTSES− markedly increased, and MTSEA+ markedly decreased conductance of D1713C (D4) suggesting that the acidic side chain of Asp1713 acts electrostatically in an unrestricted region. These results suggest that Lys1418 lies in a restricted region favorable to cations, whereas Asp1713 is at a more peripheral location in the Na+ channel pore.
Received: 8 May 1996/Revised: 15 August 1996 相似文献
2.
Structure-Function Relationship of the Ion Channel Formed by Diphtheria Toxin in Vero Cell Membranes
Diphtheria toxin (DT) forms cation selective channels at low pH in cell membranes and planar bilayers. The channels formed
by wild-type full length toxin (DT-AB), wild-type fragment B (DT-B) and mutants of DT-B were studied in the plasma membrane
of Vero cells using the patch-clamp technique. The mutations concerned certain negatively charged amino acids within the channel-forming
transmembrane domain (T-domain). These residues might interact electrostatically with cations flowing through the channel,
and were therefore exchanged for uncharged amino acids or lysine. The increase in whole-cell conductance induced by toxin,
Δg
m
, was initially determined. DT-AB induced a ∼10-fold lower Δg
m
than DT-B. The mutations DT-B E327Q, DT-B D352N and DT-B E362K did not affect Δg
m
, whereas DT-B D295K, DT-B D352K and DT-B D318K drastically reduced Δg
m
. Single channel analysis of DT-B, DT-AB, DT-B D295K, DT-B D318K and DT-B E362K was then performed in outside-out patches.
No differences were found for the single-channel conductances, but the mutants varied in their gating characteristics. DT-B
D295K exhibited only a very transient channel activity. DT-AB as well as DT-B D318K displayed significantly lower open probability
and mean dwell times than DT-B. Hence, the lower channel forming efficiency of DT-AB and DT-B D318K as compared to DT-B is
reflected on the molecular level by their tendency to spend more time in the closed position and the fast flickering mode.
Altogether, the present work shows that replacements of single amino acids distributed throughout a large part of the transmembrane
domain (T-domain) strongly affect the overall channel activity expressed as Δg
m
and the gating kinetics of single channels. This indicates clearly that the channel activity observed in DT-exposed Vero
cells at low pH is inherent to DT itself and not due to DT-activation of an endogenous channel.
Received: 20 June 1996/Revised: 8 November 1996 相似文献
3.
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytolytic toxin that belongs to the family of β barrel pore-forming protein toxins. VCC induces lysis of its target eukaryotic cells by forming transmembrane oligomeric β barrel pores. The mechanism of membrane pore formation by VCC follows the overall scheme of the archetypical β barrel pore-forming protein toxin mode of action, in which the water-soluble monomeric form of the toxin first binds to the target cell membrane, then assembles into a prepore oligomeric intermediate, and finally converts into the functional transmembrane oligomeric β barrel pore. However, there exists a vast knowledge gap in our understanding regarding the intricate details of the membrane pore formation process employed by VCC. In particular, the membrane oligomerization and membrane insertion steps of the process have only been described to a limited extent. In this study, we determined the key residues in VCC that are critical to trigger membrane oligomerization of the toxin. Alteration of such key residues traps the toxin in its membrane-bound monomeric state and abrogates subsequent oligomerization, membrane insertion, and functional transmembrane pore-formation events. The results obtained from our study also suggest that the membrane insertion of VCC depends critically on the oligomerization process and that it cannot be initiated in the membrane-bound monomeric form of the toxin. In sum, our study, for the first time, dissects membrane binding from the subsequent oligomerization and membrane insertion steps and, thus, defines the exact sequence of events in the membrane pore formation process by VCC. 相似文献
4.
Jorge Goldstein Winston E. Morris César Fabián Loidl Carla Tironi-Farinatti Bruce A. McClane Francisco A. Uzal Mariano E. Fernandez Miyakawa 《PloS one》2009,4(9)
Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing''s chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel. 相似文献
5.
6.
Ruth E. Davidson Christopher J. Chesters James D. Reid 《The Journal of biological chemistry》2009,284(49):33795-33799
Protoporphyrin IX ferrochelatase (EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX. Ferrochelatase shows specificity, in vitro, for multiple metal ion substrates and exhibits substrate inhibition in the case of zinc, copper, cobalt, and nickel. Zinc is the most biologically significant of these; when iron is depleted, zinc porphyrins are formed physiologically. Examining the kcat/Kmapp ratios for zinc and iron reveals that, in vitro, zinc is the preferred substrate at all concentrations of porphyrin. This is not the observed biological specificity, where zinc porphyrins are abnormal; these data argue for the existence of a specific iron delivery mechanism in vivo. We demonstrate that zinc acts as an uncompetitive substrate inhibitor, suggesting that ferrochelatase acts via an ordered pathway. Steady-state characterization demonstrates that the apparent kcat depends on zinc and shows substrate inhibition. Although porphyrin substrate is not inhibitory, zinc inhibition is enhanced by increasing porphyrin concentration. This indicates that zinc inhibits by binding to an enzyme-product complex (EZnDIX) and is likely to be the second substrate in an ordered mechanism. Our analysis shows that substrate inhibition by zinc is not a mechanism that can promote specificity for iron over zinc, but is instead one that will reduce the production of all metalloporphyrins in the presence of high concentrations of zinc. 相似文献
7.
Etienne Lonchamp Jean-Luc Dupont Laetitia Wioland Rapha?l Courjaret Corinne Mbebi-Liegeois Emmanuel Jover Frédéric Doussau Michel R. Popoff Jean-Louis Bossu Jean de Barry Bernard Poulain 《PloS one》2010,5(9)
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons. 相似文献
8.
Protease Inhibitors Fail To Prevent Pore Formation by the Activated Bacillus thuringiensis Toxin Cry1Aa in Insect Brush Border Membrane Vesicles 下载免费PDF全文
Martin Kirouac Vincent Vachon Delphine Quievy Jean-Louis Schwartz Raynald Laprade 《Applied microbiology》2006,72(1):506-515
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation. 相似文献
9.
10.
11.
Geneviève Lebel Vincent Vachon Gabrielle Préfontaine Frédéric Girard Luke Masson Marc Juteau Aliou Bah Geneviève Larouche Charles Vincent Raynald Laprade Jean-Louis Schwartz 《Applied and environmental microbiology》2009,75(12):3842-3850
Pore formation in the apical membrane of the midgut epithelial cells of susceptible insects constitutes a key step in the mode of action of Bacillus thuringiensis insecticidal toxins. In order to study the mechanism of toxin insertion into the membrane, at least one residue in each of the pore-forming-domain (domain I) interhelical loops of Cry1Aa was replaced individually by cysteine, an amino acid which is normally absent from the activated Cry1Aa toxin, using site-directed mutagenesis. The toxicity of most mutants to Manduca sexta neonate larvae was comparable to that of Cry1Aa. The ability of each of the activated mutant toxins to permeabilize M. sexta midgut brush border membrane vesicles was examined with an osmotic swelling assay. Following a 1-h preincubation, all mutants except the V150C mutant were able to form pores at pH 7.5, although the W182C mutant had a weaker activity than the other toxins. Increasing the pH to 10.5, a procedure which introduces a negative charge on the thiol group of the cysteine residues, caused a significant reduction in the pore-forming abilities of most mutants without affecting those of Cry1Aa or the I88C, T122C, Y153C, or S252C mutant. The rate of pore formation was significantly lower for the F50C, Q151C, Y153C, W182C, and S252C mutants than for Cry1Aa at pH 7.5. At the higher pH, all mutants formed pores significantly more slowly than Cry1Aa, except the I88C mutant, which formed pores significantly faster, and the T122C mutant. These results indicate that domain I interhelical loop residues play an important role in the conformational changes leading to toxin insertion and pore formation.Once ingested by susceptible insect larvae, the insecticidal crystal proteins of Bacillus thuringiensis are solubilized and converted to their toxic form by midgut proteases. The activated toxins bind to specific receptors on the surface of the luminal membrane of midgut columnar cells, insert into the membrane, and form pores that abolish transmembrane ionic gradients and osmotic balance, leading to the disruption of the epithelium and death of the insect (47, 51). Members of the B. thuringiensis Cry toxin family for which the atomic structure has been reported share a similar three-domain organization in which domain I is composed of a bundle of six amphipathic α-helices surrounding a hydrophobic helix (α5), and domains II and III are formed mostly of β-sheets (7, 8, 18, 26, 37, 38, 43). While domains II and III are thought to be involved in receptor binding and toxin specificity (47), domain I is believed to play a major role in membrane insertion and pore formation (51). Toxin fragments corresponding to domain I of Cry1Ac (62), Cry3Aa (53), and Cry3Ba (61) or to the first five α-helices of Cry4B (48) have been shown to form pores in model membranes. Pore formation in artificial membranes has also been demonstrated with synthetic peptides corresponding to α5 of Cry1Ac (13) and Cry3Aa (19, 21) and to the α4-loop-α5 segment of Cry3Aa (23). Spectroscopic studies have also revealed that while synthetic peptides corresponding to α4 and α5 can coassemble within a lipid bilayer, those corresponding to α2, α3, α6, and α7 adopt a membrane surface orientation (20, 22). In agreement with these findings, α4 was shown to line the lumen of the pores (42). On the other hand, convincing evidence supporting previous suggestions that most of the toxin molecule may become imbedded in the membrane (3, 39, 60) has recently been reported (44, 45).Thus, several models have been proposed for the mechanism of toxin insertion and pore formation (4, 9, 28, 32, 39, 44, 52, 56). Although these models differ in the identities of the toxin segments that are suggested to insert into the membrane, they all imply that the toxin undergoes conformational changes following binding to the membrane surface. Even though such changes imply rotations about the polypeptide backbone in domain I interhelical loops, little attention has been devoted so far to the role of domain I loop residues in pore formation.In the present study, amino acid residues strategically located within each of these loops in Cry1Aa were replaced by a cysteine using site-directed mutagenesis. The resulting mutant toxins were assayed with Manduca sexta midgut brush border membrane vesicles using a light-scattering technique. Mutations mapping within several of these loops altered the functional properties of Cry1Aa, suggesting the involvement of most domain I α-helices in the pore-forming process. 相似文献
12.
Dissipation of the Membrane Potential in Susceptible Corn Mitochondria by the Toxin of Helminthosporium maydis, Race T, and Toxin Analogs 总被引:5,自引:2,他引:5
We have tested directly the effect of Helminthosporium maydis T (Hmt) toxin and various analogs on the membrane potential formed in mitochondria isolated from a Texas (T) cytoplasmic male-sterile and a normal (N) corn. ATP, malate or succinate generated a membrane potential (negative inside) as monitored by the absorbance change of a cationic dye, safranine. The relative membrane potential (Δψ) could also be detected indirectly as 45Ca2+ uptake. Hmt toxin added to T mitochondria dissipated the steady state Δψ similar to addition of a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Toxin analogs (Cpd XIII: C41H68O12 and Cpd IV: C25H44O6), reduced native toxin (RT2C: C41H84O13) and Pm toxin (band A: C33H60O8, produced by the fungus, Phyllosticta maydis) were effective in dissipating Δψ and decreasing Ca2+ uptake with the following order: Pm (100) » HmT (23-30) > Cpd XIII (11-25) » RT2C (0-4−1.8) > Cpd IV (0.2−1.0). In contrast, the toxins and analogs had no effect on Δψ formed in N mitochondria. The striking similarities of the HmT toxin (band 1: C41H68O13) and Cpd XIII on T mitochondrial activities provide strong evidence supporting the correctness of the polyketol structure assigned to the native toxin. Since the Δψ in energized mitochondria is caused mainly by the electrogenic extrusion of H+, the results support the idea that HmT toxin increases membrane permeability of T mitochondria to H+. The host specificity of the toxin suggests that an interaction with unique target site(s) on the inner mitochondrial membrane of T corn causes H+ leakage. 相似文献
13.
Thylakoid vesicles were purified from spinach (Spinacea oleracea L. ) leaves by sucrose density gradient centrifugation and incorporated into planar lipid bilayers by stirring. At least one type of voltage-dependent K+ single-channel currents was found. Its conductance (between +60 mV and –60 mV ) was about 55 pS in symmetrical (cis: trans) 250 mmol/L KC1. This channel was sensitive to TEA (tetraethylammonium chloride) and the permeability ratio (PK+/PCl-) was about 14. 9. The selectivity of 55 pS channel determined from both reversal potentials under bi-ionic conditions or from conductance measurements in symmetrical solutions, was in the seguence of K+〉Na+〉Li+ 〉NH4+〉 Cs+. This potassium channel could act as involved in charge-balancing during light-driven proton uptake by thylakoid. 相似文献
14.
Xu Chang Hong; Nejidat Ali; Belkin Shimshon; Boussiba Sammy 《Plant & cell physiology》1994,35(5):737-741
Partition in aqueous dextran-polyethylene glycol two-phase systemwas used to isolate the plasma membranes from the alkalophiliccyanobacterium Spirulina platensis. The upper phase containeda colorless membranes obtained in relatively short time, 34h. This fraction had a different protein profile than that ofthe thylakoid fraction obtained in the lower phase. It did notcontain cytochrome c-oxidase activity, but retained characteristicMg2+-ATPase activity that is sensitive to vanadate, stimulatedby K+, and has a pH optimum near 8.5. These data support ourassumption that the upper phase of the gradient consist of theplasma membrane of S. platensis. (Received November 25, 1993; Accepted April 12, 1994) 相似文献
15.
Yasuyuki Kamata Shigehisa Furuya Kaori Takei-Mikami Akiko Fujiwara Ikuo Yasumasu 《Development, growth & differentiation》1992,34(2):211-222
In plasma membrane fraction isolated from eggs and embryos of sea urchin, 32 P-labeled proteins were found on the fluorographs of SDS-polyacrylamide gel electrophoresis, performed after an exposure of the fraction to [adenylate-32 P] nicotinamide adenine dinucleotide in the presence of cholera toxin, pertussis toxin or botulinum toxin D. The molecular weights of proteins, thus ADP-ribosylated in the presence of cholera toxin and pertussis toxin are 45 and 39 K, which correspond to Gs and Gi or Go, respectively. Protein with the molecular weight of 24 K, labeled in the presence of botulinum toxin D, corresponds to small molecular weight G-protein. The labeling intensity of 45 K protein, probably proportional to its amount, became high at the blastula stage. The labeling intensity of 39 K protein was hardly altered up to the blastula stage. The labeling intensity of 24 K protein increased after fertilization and further increase occurred at the blastula stage. At the gastrula stage, the labeling intensities of these proteins became somewhat lower than at the blastula stage. Transmembrane signaling system, in which these G-proteins are involved, is probably altered in its function during early development. 相似文献
16.
Lin Wu Lifeng Pan Chuchu Zhang Mingjie Zhang 《The Journal of biological chemistry》2012,287(40):33460-33471
Stereocilia tip links of inner ear hair cells are subjected to constant stretching during hair-bundle deflection, and accordingly are well designed to prevent from being broken by mechanical tensions. The roots of tip links, which couple tip links with the cytoskeleton, supposedly play important roles in withstanding large forces under stimulated conditions. The upper root of the tip link is mainly formed by the cytoplasmic tail of cadherin23 and its actin-anchoring protein harmonin. However, the detailed organization mode of the two proteins that gives rise to a strong upper root remains unclear. Here we show that the exon68-encoded peptide of cadherin23 can either interact with the N-terminal domain (NTD) of harmonin or form a homodimer. We demonstrate that the three harmonin binding sites of cadherin23, namely the NTD-binding motif, the exon68 peptide, and the C-terminal PDZ binding motif, do not synergize with each other in binding to harmonin, instead they facilitate formation of polymeric cadherin23/harmonin complexes. The exon68 peptide can promote the cadherin23/harmonin polymer formation via either binding to harmonin NTD or self-dimerization. We propose that the polymeric cadherin23/harmonin complex formed beneath the upper tip link membranes may serve as part of the stable rootlet structure for anchoring the tip links of stereocilia. 相似文献
17.
The apical brush border membrane, the main target site of Bacillus thuringiensis toxins, was isolated from gypsy moth (Lymantria dispar) larval midguts and fused to artificial planar lipid bilayer membranes. Under asymmetrical N-methyl-d-glucamine-HCl conditions (450 mm
cis/150 mm
trans, pH 9.0), which significantly reduce endogenous channel activity, trypsin-activated Cry1Aa, a B. thuringiensis insecticidal protein active against the gypsy moth in vivo, induced a large increase in bilayer membrane conductance at much
lower concentrations (1.1–2.15 nm) than in receptor-free bilayer membranes. At least 5 main single-channel transitions with conductances ranging from 85 to
420 pS were resolved. These Cry1Aa channels share similar ionic selectivity with P
Cl/P
NMDG permeability ratios ranging from 4 to 8. They show no evidence of current rectification. Analysis of the macroscopic current
flowing through the composite bilayer suggested voltage-dependence of several channels. In comparison, the conductance of
the pores formed by 100–500 nm Cry1Aa in receptor-free bilayer membranes was significantly smaller (about 8-fold) and their P
Cl/P
NMDG permeability ratios were also reduced (2- to 4-fold). This study provides a detailed demonstration that the target insect
midgut brush border membrane material promotes considerably pore formation by a B. thuringiensis Cry toxin and that this interaction results in altered channel properties.
Received: 23 February 2001/Revised: 15 June 2001 相似文献
18.
Alexandre Chenal Lydia Prongidi-Fix Aurélie Perier Grégory Vernier Giovanna Fragneto Daniel Gillet Michel Ferrand 《Journal of molecular biology》2009,391(5):872-346
Insertion and translocation of soluble proteins into and across biological membranes are involved in many physiological and pathological processes, but remain poorly understood. Here, we describe the pH-dependent membrane insertion of the diphtheria toxin T domain in lipid bilayers by specular neutron reflectometry and solid-state NMR spectroscopy. We gained unprecedented structural resolution using contrast-variation techniques that allow us to propose a sequential model of the membrane-insertion process at angstrom resolution along the perpendicular axis of the membrane. At pH 6, the native tertiary structure of the T domain unfolds, allowing its binding to the membrane. The membrane-bound state is characterized by a localization of the C-terminal hydrophobic helices within the outer third of the cis fatty acyl-chain region, and these helices are oriented predominantly parallel to the plane of the membrane. In contrast, the amphiphilic N-terminal helices remain in the buffer, above the polar headgroups due to repulsive electrostatic interactions. At pH 4, repulsive interactions vanish; the N-terminal helices penetrate the headgroup region and are oriented parallel to the plane of the membrane. The C-terminal helices penetrate deeper into the bilayer and occupy about two thirds of the acyl-chain region. These helices do not adopt a transmembrane orientation. Interestingly, the T domain induces disorder in the surrounding phospholipids and creates a continuum of water molecules spanning the membrane. We propose that this local destabilization permeabilizes the lipid bilayer and facilitates the translocation of the catalytic domain across the membrane. 相似文献
19.
Jeffrey W. Warmke Robert A.G. Reenan Peiyi Wang Su Qian Joseph P. Arena Jixin Wang Denise Wunderler Ken Liu Gregory J. Kaczorowski Lex H.T. Van der Ploeg Barry Ganetzky Charles J. Cohen 《The Journal of general physiology》1997,110(2):119-133
The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (K
d ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels. 相似文献
20.
Yoon Seok Jung Andrew S. Cavanagh Lynn Gedvilas Nicodemus E. Widjonarko Isaac D. Scott Se‐Hee Lee Gi‐Heon Kim Steven M. George Anne C. Dillon 《Liver Transplantation》2012,2(8):1022-1027
Atomic layer deposition (ALD) of Al2O3 is applied on a polypropylene separator for lithium‐ion batteries. A thin Al2O3 layer (<10 nm) is coated on every surface of the porous polymer microframework without significantly increasing the total separator thickness. The thin Al2O3 ALD coating results in significantly suppressed thermal shrinkage, which may lead to improved safety of the batteries. More importantly, the wettability of Al2O3 ALD‐coated separators in an extremely polar electrolyte based on pure propylene carbonate (PC) solvent is demonstrated, without any decrease in electrochemical performances such as capacity, rate capability, and cycle life. Finally, a LiCoO2/natural graphite full cell is demonstrated under extremely severe conditions (pure PC‐based electrolyte and high (4.5 V) upper cut‐off potential), which is enabled by the Al2O3 ALD coating on all three components (cathode, anode, and separator). 相似文献