首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg(2+), a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.  相似文献   

2.
Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2   总被引:2,自引:0,他引:2  
Single-molecule measurements of the interaction of leukocyte function-associated antigen-1 (LFA-1), expressed on Jurkat T cells, with intercellular adhesion molecules-1 and -2 (ICAM-1 and ICAM-2) were conducted using atomic force microscopy (AFM). The force spectra (i.e., unbinding force versus loading rate) of both the LFA-1/ICAM-1 and LFA-1/ICAM-2 interactions were acquired at a loading rate range covering 3 orders of magnitude (50-60,000 pN/s) and revealed a fast loading regime and a slow loading regime. This indicates that the dissociation of both complexes involves overcoming a steep inner and a wide outer activation barrier. LFA-1 binding to ICAM-1 and ICAM-2 was strengthened in the slow loading regime by the addition of Mg(2+). Differences in the dynamic strength of the LFA-1/ICAM-1 and LFA-1/ICAM-2 interactions can be attributed to the presence of wider barriers in the ICAM-2 complex, making it more responsive to a pulling force than the ICAM-1 complex.  相似文献   

3.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

4.
磷脂酰胆碱过氧化物(phosphatidylcholine hydroperoxide,PCOOH)是磷脂酰胆碱(phosphatidylcholine,PC)氧化的最初产物,在包括动脉粥样硬化在内的各种病理条件下,可以在血浆和组织中检测到。为了评定动脉粥样硬化的程度,我们研究了PCOOH对THP-1细胞与内皮细胞黏附分子(intracellular adhesionmolecule-1,ICAM-1)之间粘附状态的影响,发现THP-1细胞与内皮细胞黏附分子的粘附是剂量依赖于PCOOH的。不氧化的PC、sn-2截断的PC和其他过氧化物不影响THP-1细胞与内皮细胞黏附分子的黏附。在PCOOH处理的细胞中,发现了F-肌动蛋白富集的突出膜结构,与淋巴细胞功能关联的抗原(lymphocytefunction-associated antigen-1,LFA-1)定位在突出结构上。细胞松弛素D和肌动蛋白聚合抑制剂能够抑制PCOOH诱导细胞黏附到ICAM-1和膜突起上。我们研究了参与PCOOH诱导THP-1细胞黏附到ICAM-1上的Rho-家族的GTP酶,发现氟伐他汀对异戊二烯的消耗以及GGTI-286对牛儿基转移酶的阻害均能够抑制PCOOH诱导细胞黏附到ICAM-1和膜上。Pull-down方法表明,在PCOOH处理的细胞中,Rac1和Rac2被活化。Pan-Rho-家族的GTP酶抑制剂难辨梭状芽孢杆菌B、Rac特异抑制剂NSC23776和Rac同型体的RNA干扰,均能够减少细胞黏附。这些结果表明,PCOOH诱导的LFA-1调节的细胞黏附到ICAM-1上是通过actin细胞骨架。这一机理可能参与了单核细胞黏附到动脉壁上并启动了动脉粥样硬化。  相似文献   

5.
ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18)   总被引:13,自引:0,他引:13       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3129-3139
While the leukocyte integrin lymphocyte function-associated antigen (LFA)-1 has been demonstrated to bind intercellular adhesion molecule (ICAM)-1, results with the related Mac-1 molecule have been controversial. We have used multiple cell binding assays, purified Mac- 1 and ICAM-1, and cell lines transfected with Mac-1 and ICAM-1 cDNAs to examine the interaction of ICAM-1 with Mac-1. Stimulated human umbilical vein endothelial cells (HUVECs), which express a high surface density of ICAM-1, bind to immunoaffinity-purified Mac-1 adsorbed to artificial substrates in a manner that is inhibited by mAbs to Mac-1 and ICAM-1. Transfected murine L cells or monkey COS cells expressing human ICAM-1 bind to purified Mac-1 in a specific and dose-dependent manner; the attachment to Mac-1 is more temperature sensitive, lower in avidity, and blocked by a different series of ICAM-1 mAbs when compared to LFA-1. In a reciprocal assay, COS cells cotransfected with the alpha and beta chain cDNAs of Mac-1 or LFA-1 attach to immunoaffinity- purified ICAM-1 substrates; this adhesion is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. Two color fluorescence cell conjugate experiments show that neutrophils stimulated with fMLP bind to HUVEC stimulated with lipopolysaccharide for 24 h in an ICAM-1-, Mac-1-, and LFA-1- dependent fashion. Because cellular and purified Mac-1 interact with cellular and purified ICAM-1, we conclude that ICAM-1 is a counter receptor for Mac-1 and that this receptor pair is responsible, in part, for the adhesion between stimulated neutrophils and stimulated endothelial cells.  相似文献   

6.
Leukocyte adhesion and trafficking at the endothelium requires both cellular adhesion molecules and chemotactic factors. A newly identified CX3C chemokine, fractalkine, expressed on activated endothelial cells, plays an important role in leukocyte adhesion and migration. We examined the functional effects of fractalkine on beta1 and beta2 integrin-mediated adhesion using a macrophage-like cell line, THP-1 cells. In this study, we report that THP-1 cells express mRNA encoding a receptor for fractalkine, CX3CR1, determined by Northern blotting. Scatchard analysis using fractalkine-SEAP (secreted form of placental alkaline phosphatase) chimeric proteins revealed that THP-1 cells express a single class of CX3CR1 with a dissociation constant of 30 pM and a mean expression of 440 sites per cell. THP-1 cells efficiently adhered, in a fractalkine-dependent manner, to full-length of fractalkine immobilized onto plastic and to the membrane-bound form of fractalkine expressed on ECV304 cells or TNF-alpha-activated HUVECs. Moreover, soluble-fractalkine enhanced adhesion of THP-1 cells to fibronectin and ICAM-1 in a dose-dependent manner. Pertussis toxin, an inhibitor of Gi, inhibited the fractalkine-mediated enhancement of THP-1 cell adhesion to fibronectin and ICAM-1. Finally, we found that soluble-fractalkine also enhanced adhesion of freshly separated monocytes to fibronectin and ICAM-1. These results indicate that fractalkine may induce firm adhesion between monocytes and endothelial cells not only through an intrinsic adhesion function itself, but also through activation of integrin avidity for their ligands.  相似文献   

7.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

8.
The integrins can activate signaling pathways, but the final downstream outcome of these pathways is often unclear. This study analyzes the consequences of signaling events initiated by the interaction of the leukocyte integrin LFA-1 with its ligand, dimeric ICAM-1. We show that the active form of LFA-1 regulates its own function on primary human T cells by directing the remodeling of the F-actin cytoskeleton to strengthen T cell adhesion to ICAM-1. Confocal microscopy revealed that both F-actin bundling and overall levels of F-actin are increased in the ICAM-1-adhering T cells. This increase in F-actin levels and change in F-actin distribution was quantitated for large numbers of T cells using the technique of laser scanning cytometry and was found to be significant. The study went on to show that clustering of conformationally altered LFA-1 is essential for the changes in F-actin, and a model is proposed in which clustered, high-avidity T cell LFA-1, interacting with multivalent ICAM-1, causes LFA-1 signaling, which results in F-actin polymerization and higher-order F-actin bundling. The findings demonstrate that LFA-1 acts not only as an adhesion receptor but also as a signaling receptor by actively initiating the F-actin reorganization that is essential for many T cell-dependent processes.  相似文献   

9.
Intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured umbilical vein and saphenous vein endothelial cells was upregulated between 2.5- and 40-fold by rIL-1, rTNF, LPS and rIFN gamma corresponding to up to 5 X 10(6) sites/cell. Endothelial cell ICAM-1 was a single band of 90 kD in SDS-PAGE. Purified endothelial cell ICAM-1 reconstituted into liposomes and bound to plastic was an excellent substrate for both JY B lymphoblastoid cell and T lymphoblast adhesion. Adhesion to endothelial cell ICAM-1 in planar membranes was blocked completely by monoclonal antibodies to lymphocyte function associated antigen-1 (LFA-1) or ICAM-1. Adhesion to artificial membranes was most sensitive to ICAM-1 density within the physiological range found on resting and stimulated endothelial cells. Adhesion of JY B lymphoblastoid cells, normal and genetically LFA-1 deficient T lymphoblasts and resting peripheral blood lymphocytes to endothelial cell monolayers was also assayed. In summary, LFA-1 dependent (60-90% of total adhesion) and LFA-1-independent basal adhesion was observed and the use of both adhesion pathways by different interacting cell pairs was increased by monokine or lipopolysaccharide stimulation of endothelial cells. The LFA-1-dependent adhesion could be further subdivided into an LFA-1/ICAM-1-dependent component which was increased by cytokines and a basal LFA-1-dependent, ICAM-1-independent component which did not appear to be affected by cytokines. We conclude that ICAM-1 is a regulated ligand for lymphocyte-endothelial cell adhesion, but at least two other major adhesion pathways exist.  相似文献   

10.
Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0-10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes.  相似文献   

11.
We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study. Published: January 15, 2004  相似文献   

12.
A three-dimensional single-particle tracking system was combined with an optical trap to investigate the behavior of transmembrane adhesion proteins. We exploited this setup to investigate which part of the cell adhesion protein LFA-1 forms a connection to the cytoskeleton after binding to its ligand ICAM-1. LFA-1 is an integrin consisting of an alpha and a beta chain. Thus far, only the cytoplasmic tail of the beta chain is known to form a connection to the cytoskeleton. We investigated cells that express a mutant form of LFA-1 that lacks the complete beta cytoplasmic tail and therefore is not thought to bind to the cytoskeleton. Interestingly, single-particle tracking measurements using beads coated with the ligand ICAM-1 indicate that this mutant form of LFA-1 does not move freely within the cell membrane, suggesting that LFA-1 is still connected to the cytoskeleton network. This finding is strongly supported by the observation that LFA-1 exhibits a more diffusive motion when the cytoskeleton network is disrupted and confirmed by the optical trap measurements used to force the proteins to move through the membrane. Collectively, our findings suggest that the interaction of LFA-1 with the cytoskeleton cannot solely be attributed to the cytoplasmic part of the beta chain.  相似文献   

13.
S D Marlin  T A Springer 《Cell》1987,51(5):813-819
Lymphocyte function-associated antigen 1 (LFA-1) is a leukocyte cell surface glycoprotein that promotes intercellular adhesion in immunological and inflammatory reactions. It is an alpha beta complex that is structurally related to receptors for extracellular matrix components, and thus belongs to the integrin family. ICAM-1 (intercellular adhesion molecule-1) is a distinct cell surface glycoprotein. Its broad distribution, regulated expression in inflammation, and involvement in LFA-1-dependent cell-cell adhesion have suggested that ICAM-1 may be a ligand for LFA-1. We have purified ICAM-1 and incorporated it into artificial supported lipid membranes. LFA-1+ but not LFA-1- cells bound to ICAM-1 in the artificial membranes, and the binding could be specifically inhibited by anti-ICAM-1 treatment of the membranes or by anti-LFA-1 treatment of the cells. The cell binding to ICAM-1 required metabolic energy production, an intact cytoskeleton, and the presence of Mg2+ and was temperature dependent, characteristics of LFA-1- and ICAM-1-dependent cell-cell adhesion.  相似文献   

14.
Integrins in effector T cells are highly expressed and important for trafficking of these cells and for their effector functions. However, how integrins are regulated in effector T cells remains poorly characterized. Here, we have investigated effector T cell leukocyte function-associated antigen-1 (LFA-1) regulation in primary murine effector T cells. These cells have high LFA-1 integrin expression and display high spontaneous binding to intercellular adhesion molecule-1 (ICAM-1) ligand under static conditions. In addition, these cells are able to migrate spontaneously on ICAM-1. Atomic force microscopy measurements showed that the force required for unbinding of integrin-ligand interactions increases over time (0.5–20-s contact time). The maximum unbinding force for this interaction was ∼140 piconewtons at 0.5-s contact time, increasing to 580 piconewtons at 20-s contact time. Also, the total work required to disrupt the interaction increased over the 20-s contact time, indicating LFA-1-mediated adhesion strengthening in primary effector T cells over a very quick time frame. Effector T cells adhered spontaneously to ICAM-1 under conditions of shear flow, in the absence of chemokine stimulation, and this binding was independent of protein kinase B/Akt and protein kinase C kinase activity, but dependent on calcium/calmodulin signaling and an intact actin cytoskeleton. These results indicate that effector T cell integrins are highly expressed and spontaneously adhesive in the absence of inside-out integrin signaling but that LFA-1-mediated firm adhesion under conditions of shear flow requires downstream integrin signaling, which is dependent on calcium/calmodulin and the actin cytoskeleton.  相似文献   

15.
Phosphorylation of the leukocyte function-associated antigen-1 (LFA-1) integrin beta2-chain on Thr-758 occurs after T cell receptor stimulation and leads to 14-3-3 recruitment to the integrin, actin cytoskeleton reorganization, and increased adhesion. Here, we have investigated the signaling effects of beta2 integrin Thr-758 phosphorylation. A penetratin-coupled phospho-Thr-758-beta2 peptide (mimicking the part of the integrin beta-chain surrounding Thr-758) stimulated adhesion of human T cells to the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). Additionally, the peptide activated the small GTPases Rac-1 and Cdc42 in T cells. Constitutively active forms of Rac-1 and Cdc42, but not Rho, could compensate for the reduction of cell adhesion to ICAM-1 caused by the T758A mutation in the beta2 integrin. Additionally, the active GTPases salvaged the cell-spreading defect of T758A integrin-transfected cells on coated ICAM-1. A dominant negative form of Cdc42, on the other hand, significantly reduced wild-type beta2 integrin-mediated cell adhesion and spreading. In a T cell stimulation system, the pThr-758 penetratin peptide acted in a similar manner to coated ICAM-1 to increase T cell receptor-induced CD69 expression. These results show that Thr-758-phosphorylated LFA-1 is upstream of Rac-1/Cdc42, cell adhesion, and costimulatory activation of human T cells, thus identifying phosphorylation of Thr-758 in beta2 as a proximal element in LFA-1 signaling.  相似文献   

16.
Intercellular adhesion molecule-1 (ICAM-1) is found on the surface of many hemopoietic and non-hemopoietic cells and can function as an adhesive ligand for the integrin, leukocyte function associated molecule-1 (LFA-1, CD11a/CD18). ICAM-1/LFA-1 interaction is thought to be of importance in many immune mediated cell-cell adhesion reactions. Recently, the major human rhinovirus (HRV) receptor has been identified as ICAM-1. HRV has been shown to bind specifically to ICAM-1 on transfected COS cells and to purified ICAM-1, which has been adsorbed to plastic microtiter wells. We have compared the ability of ICAM-1 expressed on the surface of human fibroblasts (FB) to function as a receptor for HRV as well as a receptor for LFA-1-bearing human T lymphocytes. We show that FB stimulation by the cytokines IFN-gamma or IL-1, both known inducers of ICAM-1 synthesis and expression in FB, induced an increase in HRV binding to treated cells, which could be inhibited by antibody to ICAM-1. In contrast, only IFN-gamma and not IL-1 treatment of FB resulted in an increased adhesion of T lymphocytes. Binding of HRV to IFN-gamma-treated FB inhibited the subsequent adhesion of T cells. We also show that prior stimulation of FB with IL-1 enhanced the adhesion of HRV to IFN-gamma-stimulated cells, although IL-1 pretreatment was inhibitory for T cell adhesion. As these two cytokines both up-regulate ICAM-1 on the surface of human FB, the contrasting effects of IFN-gamma and IL-1 on human FB ICAM-1 adhesion to HRV and to LFA-1 suggest that qualitative as well as quantitative alterations of the ICAM-1 molecule may contribute to its specificity of ligand recognition.  相似文献   

17.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

18.
Lymphocyte function-associated antigen 1 (LFA-1), a member of β2-integrin family, exerts multiple roles in host T cell immunity and has been identified as a useful drug-development target for inflammatory and autoimmune diseases. Applying the findings that primary resting T cells absorb nanometric membrane vesicles derived from antigen presenting cells (APC) via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide-major histocompatibility complex (MHC) complex (pMHC) and LFA-1 with its ligand, intercellular adhesion molecule-1 (ICAM-1), and that signaling cascades triggered by TCR/pMHC interaction take a part in the vesicle-absorption, we established a cell-based high throughput assay for systematic investigation, via isolation of small molecules modulating the level of vesicle-absorption, of molecular mechanisms underlying the T cell absorption of APC-derived vesicles, i.e., structural basis of TCR/pMHC and LFA-1/ICAM-1 interactions and TCR-mediated LFA-1 activation. As primary T cells along with physiological ligands expressed in biological membrane are used and also individual cells in assay samples are analyzed by flow cytometry, results obtained using the assay system hold superior physiological and therapeutic relevance as well as statistical precision.  相似文献   

19.
A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1   总被引:139,自引:0,他引:139  
Homotypic adhesion by phorbol ester-stimulated lymphocytes requires LFA-1 and Mg+2 and does not involve like-like interactions between LFA-1 molecules on adjacent cells. The latter finding suggested that a second molecule, distinct from LFA-1, also participates in LFA-1-dependent adhesion. The identification of such a molecule was the object of this investigation. After immunization with LFA-1-deficient EBV-transformed lymphoblastoid cells, a MAb was obtained that inhibits phorbol ester-stimulated aggregation of LFA-1+ EBV lines. This MAb defines a novel cell surface molecule, which is designated intercellular adhesion molecule 1 (ICAM-1). ICAM-1 is distinct from LFA-1 in both cell distribution and structure. In SDS-PAGE, ICAM-1 isolated from JY cells is a single chain of Mr = 90,000. As shown by MAb inhibition, ICAM-1 participates in phorbol ester-stimulated adhesion reactions of B lymphocyte and myeloid cell lines and T lymphocyte blasts. However, aggregation of one T lymphocyte cell line (SKW-3) was inhibited by LFA-1 but not ICAM-1 MAb. It is proposed that ICAM-1 may be a ligand in many, but not all, LFA-1-dependent adhesion reactions.  相似文献   

20.
To elucidate the role of the cytoskeleton regulating avidity or affinity changes in the leukocyte adhesion receptor lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)beta(2)), we generated mutant cytoplasmic LFA-1 receptors and expressed these into the erythroleukemic cell line K562. We determined whether intercellular adhesion molecule-1 (ICAM-1)-mediated adhesion of LFA-1, lacking parts of its cytoplasmic tails, is regulated through receptor diffusion/clustering and/or by altered ligand binding affinity. All cytoplasmic deletion mutants that lack the complete beta(2) cytoplasmic tail and/or the conserved KVGFFKR sequence in the alpha(L) cytoplasmic tail were constitutively active and expressed high levels of the activation epitopes NKI-L16 and M24. Surprisingly, whereas these mutants showed a clustered cell surface distribution of LFA-1, the ligand-binding affinity as measured by titration of soluble ligand ICAM-1 remained unaltered. The notion that redistribution of LFA-1 does not alter ligand-binding affinity is further supported by the finding that disruption of the cytoskeleton by cytochalasin D did not alter the binding affinity nor adhesion to ICAM-1 of these mutants. Most cytoplasmic deletion mutants that spontaneously bound ICAM-1 were not capable to spread on ICAM-1, demonstrating that on these mutants LFA-1 is not coupled to the actin cytoskeleton. From these data we conclude that LFA-1-mediated cell adhesion to ICAM-1 is predominantly regulated by receptor clustering and that affinity alterations do not necessarily coincide with strong ICAM-1 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号