首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modulation by internal free [Mg2+] of spontaneous calcium release events (Ca2+ “sparks”) from the sarcoplasmic reticulum (SR) was studied in depolarized notched frog skeletal muscle fibers using a laser scanning confocal microscope in line-scan mode (x vs. t). Over the range of [Mg2+] from 0.13 to 1.86 mM, decreasing the [Mg2+] induced an increase in the frequency of calcium release events in proportion to [Mg2+]−1.6. The change of event frequency was not due to changes in [Mg-ATP] or [ATP]. Analysis of individual SR calcium release event properties showed that the variation in event frequency induced by the change of [Mg2+] was not accompanied by any changes in the spatiotemporal spread (i.e., spatial half width or temporal half duration) of Ca2+ sparks. The increase in event frequency also had no effect on the distribution of event amplitudes. Finally, the rise time of calcium sparks was independent of the [Mg2+], indicating that the open time of the SR channel or channels underlying spontaneous calcium release events was not altered by [Mg2+] over the range tested. These results suggest that in resting skeletal fibers, [Mg2+] modulates the SR calcium release channel opening frequency by modifying the average closed time of the channel without altering the open time. A kinetic reaction scheme consistent with our results and those of bilayer and SR vesicle experiments indicates that physiological levels of resting Mg2+ may inhibit channel opening by occupying the site for calcium activation of the SR calcium release channel.  相似文献   

2.
A New View of Ca2+ Sparks in Frog Skeletal Muscle   总被引:2,自引:0,他引:2  
  相似文献   

3.
Anion Permeability of Frog Skeletal Muscle   总被引:5,自引:3,他引:2       下载免费PDF全文
Unidirectional chloride effluxes from small bundles of muscle fibers were measured under equilibrium conditions. It was found that chloride effluxes are described by the constant field theory with a chloride permeability constant, Pcl, which is independent of the chloride concentration and the membrane potential. The value of Pcl at neutral pH was found to be 5 x 10-6 cm/sec. Chloride movements were markedly depressed at low pH and increased at high pH. It is concluded that chloride fluxes are independent of each other over a wide pH range. The effect of nitrate on the chloride effluxes was measured. It was found that both external and internal nitrate alone reduced the chloride efflux with the external nitrate appearing more effective than internal nitrate due to the nonequilibrium nature of the experimental conditions. Under equilibrium conditions the reduction of the chloride efflux by nitrate was greater than the external nitrate effect, both of which were dependent on the relative proportion of nitrate in the bathing solution. These results are consistent with the hypothesis that the inhibition of the chloride movements by nitrate is essentially symmetrical with regard to the inside and outside surfaces of the muscle membranes. The relative action of nitrate on the chloride efflux was independent of the external pH despite marked changes in the absolute values of the fluxes measured.  相似文献   

4.
Fatigue in muscles that shorten might have other causes than fatigue during isometric contractions, since both cross-bridge cycling and energy demand are different in the two exercise modes. While isometric contractions are extensively studied, the causes of fatigue in shortening contractions are poorly mapped. Here, we investigate fatigue mechanisms during shortening contractions in slow twitch skeletal muscle in near physiological conditions. Fatigue was induced in rat soleus muscles with maintained blood supply by in situ shortening contractions at 37°C. Muscles were stimulated repeatedly (1 s on/off at 30 Hz) for 15 min against a constant load, allowing the muscle to shorten and perform work. Fatigue and subsequent recovery was examined at 20 s, 100 s and 15 min exercise. The effects of prior exercise were investigated in a second exercise bout. Fatigue developed in three distinct phases. During the first 20 s the regulatory protein Myosin Light Chain-2 (slow isoform, MLC-2s) was rapidly dephosphorylated in parallel with reduced rate of force development and reduced shortening. In the second phase there was degradation of high-energy phosphates and accumulation of lactate, and these changes were related to slowing of muscle relengthening and relaxation, culminating at 100 s exercise. Slowing of relaxation was also associated with increased leak of calcium from the SR. During the third phase of exercise there was restoration of high-energy phosphates and elimination of lactate, and the slowing of relaxation disappeared, whereas dephosphorylation of MLC-2s and reduced shortening prevailed. Prior exercise improved relaxation parameters in a subsequent exercise bout, and we propose that this effect is a result of less accumulation of lactate due to more rapid onset of oxidative metabolism. The correlation between dephosphorylation of MLC-2s and reduced shortening was confirmed in various experimental settings, and we suggest MLC-2s as an important regulator of muscle shortening.  相似文献   

5.
Radioautographs of 45Ca-labeled frog skeletal muscles have been prepared using freeze-dry and vapor fixation techniques to avoid displacement of the isotope during the preparation of the radioautographs. 45Ca has been localized in resting muscles exposed to 45Ca Ringer's for 5 min or 5 hr and in isotopically labeled muscles recovering from tetanic stimulation at room temperature or at 4°C. In muscles soaked at rest for 5 min 45Ca was present almost exclusively in the terminal cisternae. In all other muscles there were three sites at which the isotope was concentrated: (a) the terminal cisternae, (b) the intermediate cisternae and the longitudinal tubules, and (c) the A band portion of the myofibrils. The terminal cisternae were labeled more rapidly than the myofibrils, but both exchanges were accelerated by electrical stimulation. The amount of 45Ca in the longitudinal tubules and the intermediate cisternae decreased with time after a tetanus as the amount in the terminal cisternae increased. It is proposed that electrical stimulation releases calcium from the terminal cisternae and that relaxation occurs from the binding of the released calcium by the longitudinal tubules and the intermediate cisternae. Complete recovery from mechanical activity involves the transport of this bound calcium into the reticulum and its subsequent binding by the terminal cisternae. Resting exchange of calcium occurs primarily between the terminal cisternae and the transverse tubules.  相似文献   

6.
Using polyclonal and monoclonal antibodies to visualize under a confocal microscope type-1 cannabinoid receptors (CB1) and acetylcholine (ACh) receptors, respectively, or α-bungarotoxin conjugated to Alexa-Fluor 555 for Ach receptors, we found that they colocalize on twitch muscle fibers in the frog (Rana pipiens). We show that both the CB1 and ACh receptors are present on the fast skeletal muscle motor end-plate. The CB1 receptor is present along the entire membrane of the muscle fiber, whereas the ACh receptor is expressed primarily at the motor end-plate. Analysis of the colocalization produced a cross-correlation coefficient of 0.519 ± 0.021 (n = 9) for both receptors at the muscle motor end-plate. This study suggests a close proximity between these two types of receptor proteins and that they could interact. CB1 could function at some stage of excitation–contraction coupling in these muscle fibers. However, further investigation is needed in order to clarify these issues.  相似文献   

7.
Measurement of the Impedance of Frog Skeletal Muscle Fibers   总被引:5,自引:0,他引:5       下载免费PDF全文
Impedance measurements are necessary to determine the passive electrical properties of cells including the equivalent circuits of the several pathways for current flow. Such measurements are usually made with microelectrodes of high impedance (some 15 MΩ) over a wide frequency range (1-10,000 Hz) and so are subject to many errors. An input amplifier has been developed which has negligible phase shift in this frequency range because it uses negative feedback to keep tiny the voltage on top of the microelectrode. An important source of artifact is the extracellular potential produced by capacitive current flow through the wall of the microelectrodes and the effective resistance of the bathing solution. This artifact is reduced some 10 times by shielding the current microelectrode with a conductive paint. The residual artifact is analyzed, measured, and subtracted from our results. The interelectrode coupling capacitance is reduced below 2 × 10-17 F and can be neglected. Phase and amplitude measurements are made with phase-sensitive detectors insensitive to noise. The entire apparatus is calibrated at different signal to noise ratios and the nature of the extracellular potential is investigated. The phase shift in the last 5-20 μm of the microelectrode tip is shown to be small and quite independent of frequency under several conditions. Experimental measurements of the phase characteristic of muscle fibers in normal Ringer are presented. The improvements in apparatus and the physiological significance of impedance measurements are discussed. It is suggested that the interpretation of impedance measurements is sensitive to small errors and so it is necessary to present objective evidence of the reliability of one's apparatus and measurements.  相似文献   

8.
Cannell and Allen (1984. Biophys. J. 45:913–925) introduced the use of a multi-compartment model to estimate the time course of spread of calcium ions (Ca2+) within a half sarcomere of a frog skeletal muscle fiber activated by an action potential. Under the assumption that the sites of sarcoplasmic reticulum (SR) Ca2+ release are located radially around each myofibril at the Z line, their model calculated the spread of released Ca2+ both along and into the half sarcomere. During diffusion, Ca2+ was assumed to react with metal-binding sites on parvalbumin (a diffusible Ca2+- and Mg2+-binding protein) as well as with fixed sites on troponin. We have developed a similar model, but with several modifications that reflect current knowledge of the myoplasmic environment and SR Ca2+ release. We use a myoplasmic diffusion constant for free Ca2+ that is twofold smaller and an SR Ca2+ release function in response to an action potential that is threefold briefer than used previously. Additionally, our model includes the effects of Ca2+ and Mg2+ binding by adenosine 5′-triphosphate (ATP) and the diffusion of Ca2+-bound ATP (CaATP). Under the assumption that the total myoplasmic concentration of ATP is 8 mM and that the amplitude of SR Ca2+ release is sufficient to drive the peak change in free [Ca2+] (Δ[Ca2+]) to 18 μM (the approximate spatially averaged value that is observed experimentally), our model calculates that (a) the spatially averaged peak increase in [CaATP] is 64 μM; (b) the peak saturation of troponin with Ca2+ is high along the entire thin filament; and (c) the half-width of Δ[Ca2+] is consistent with that observed experimentally. Without ATP, the calculated half-width of spatially averaged Δ[Ca2+] is abnormally brief, and troponin saturation away from the release sites is markedly reduced. We conclude that Ca2+ binding by ATP and diffusion of CaATP make important contributions to the determination of the amplitude and the time course of Δ[Ca2+].  相似文献   

9.
The transverse electrical impedance of single frog skeletal muscle fibers was measured at 31 frequencies that ranged from 1 to 100,000 Hz. Each fiber was bathed entirely in Ringer's solution, but it was positioned so that a central length of 5 mm was in a hollow plastic disk and was electrically isolated from the ends of the fiber. The diameter of the segment of the fiber in the disk was measured and then the segment was pressed from opposite sides by two insulating wedges. Electrical current was passed transversely through the segment between two platinum-platinum black electrodes that were located in the pools of Ringer's solution within the disk. The results were corrected for stray parallel capacitance, series resistance of the Ringer's solution between the fiber and the electrodes, parallel shunt resistance around the fiber, and the phase shift of the measuring apparatus. A nonlinear least-squares routine was used to fit a lumped equivalent circuit to the data from six fibers. The equivalent circuit that was chosen for the fibers contained three parallel branches; each branch was composed of a resistor and a capacitor in series. The model also included a seventh adjustable parameter that was designed to account for the degree of compression of the fibers by the insulating wedges. The branches of the equivalent circuit were assumed to represent the electrical properties of: (a) the myoplasm in series with the membrane capacitance that was exposed directly to the pools of Ringer's solution; (b) the capacitance and series resistance of the transverse tubules that were exposed directly to the pools of Ringer's solution; (c) the membrane capacitance in series with the shunt resistance between the fibers and the insulating wedges. The results gave no indication that current entered the sarcoplasmic reticulum.  相似文献   

10.
Permeability of Frog Skeletal Muscle Cells to Choline   总被引:2,自引:1,他引:1       下载免费PDF全文
Using choline-methyl-C14 as a tracer, it has been shown that choline+ penetrates into the cells of resting frog skeletal muscle at a rate similar to that of Na+, and that it escapes from these cells much more slowly than does Na+. Some implications of these findings are discussed.  相似文献   

11.
Impedance of Frog Skeletal Muscle Fibers in Various Solutions   总被引:19,自引:11,他引:8       下载免费PDF全文
The linear circuit parameters of 140 muscle fibers in nine solutions are determined from phase measurements fitted with three circuit models: the disk model, in which the resistance to radial current flow is in the lumen of the tubules; the lumped model, in which the resistance is at the mouth of the tubules; and the hybrid model, in which it is in both places. The lumped model fails to fit the data. The disk and hybrid model fit the data, but the optimal circuit values of the hybrid model seem more reasonable. The circuit values depend on sarcomere length. The conductivity of the lumen of the tubules is less than, and varies in a nonlinear manner with, the conductivity of the bathing solution, suggesting that the tubules are partially occluded by some material like basement membrane which restricts the mobility of ions and has fixed charge. The x2.5 hypertonic sucrose solution used in many voltage clamp experiments produces a large increase in the radial resistance, suggesting that control of the potential across the tubular membranes would be difficult to achieve. Glycerol-treated fibers have 90% of their tubular system insulated from the extracellular solution and 10% connected to the extracellular solution through a high resistance. We discuss the implications of our results for calculations of the nonlinear properties of muscle fibers, including the action potential and the radial spread of contraction.  相似文献   

12.
Autoradiographic Studies of Intracellular Calcium in Frog Skeletal Muscle   总被引:15,自引:6,他引:9  
Autoradiographs consisting of a 1000 A thick tissue section and a 1400 A thick emulsion film have been prepared from frog toe muscles labeled with Ca45. The muscles had been fixed with an oxalate-containing osmium solution at rest at room temperature, at rest at 4°C, during relaxation following K+ depolarization or after prolonged depolarization. From 6 to 39 per cent of K+ contracture tension was produced during fixation. The grains in the autoradiographs were always concentrated in the center 0.2 to 0.3 µ of the I band and the region of the overlapping of the thick and thin filaments. The greater the tension produced during fixation, the greater was the concentration in the A band and the smaller the concentration in the I band. Autoradiographs of two muscles fixed by freeze-substitution resembled those of muscles which produced little tension during osmium fixation. Muscles which shortened during fixation produced fewer grains. In the narrow (<2.0 µ) sarcomeres of the shortened muscles, grain density decreased with decreasing sarcomere width. A theoretical analysis of the significance of these grain distributions is proposed and discussed.  相似文献   

13.
猪骨骼肌快肌肌钙蛋白C2基因的cDNA克隆与表达分析   总被引:3,自引:0,他引:3  
从人骨骼肌快肌肌钙蛋白C2(TNNC2)基因出发,在dbEST数据库中进行同源性搜索,找到一个有较高同源性且在猪背最长肌中表达EST(BM083186)。通过电子克隆和进一步RT-PCR实验验证,获得猪TNNC2基因全长cDNA序列,其全长843bp,开放阅读框为201~683bp,编码有160个氨基酸。同源性分析结果表明,与人、鼠的骨骼肌快肌肌钙蛋白C2基因cDNA编码区(CDS)同源性分别为93.6%、90.5%,蛋白序列同源性均为97.5%。多种组织的半定量RT-PCR研究表明,该基因在骨骼肌中表达,并且在杜洛克猪背最长肌中的表达比兰塘猪高。  相似文献   

14.
The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension–pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring ktr (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased ktr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.  相似文献   

15.
Discrete Ca2+ release events (Ca2+ “sparks”) were recorded in cut segments of single frog skeletal muscle fibers using a video-rate laser-scanning confocal microscope operating in line-scan mode (63 μs per line). Fibers loaded with the Ca2+ indicator fluo-3 were voltage clamped at a holding potential of 0 mV, briefly reprimed at −90 mV, and then strongly depolarized with a large test pulse to activate any reprimed voltage sensors. Using this high time resolution system, it was possible to record individual Ca2+ sparks at ∼30-fold higher time resolution than previously attained. The resulting new experimental data provides a means of characterizing the time course of fluorescence during the brief (a few milliseconds) rising phase of a spark, which was not possible with the previously used 1.5–2 ms per line confocal systems. Analysis of the time course of individual identified events indicates that fluorescence begins to rise rather abruptly at the start of the spark, continues to rise at a slightly decreasing rate to a relatively sharp peak, and then declines along a quasi-exponential time course. The mean rise time of 198 sparks was 4.7 ± 0.1 ms, and there was no correlation between rise time and peak amplitude. Average sparks constructed by temporally and spatially superimposing and summing groups of individual sparks having similar rise times gave a lower noise representation of the sparks, consistent with the time course of individual events. In theory, the rising phase of a spark provides a lower bound estimation of the time that Ca2+ ions are being released by the sarcoplasmic reticulum Ca2+ channel(s) generating the spark. The observed time course of fluorescence suggests that the Ca2+ release underlying a spark could continue at a fairly constant rate throughout the rising phase of the spark, and then stop rather abruptly at the time of the peak.  相似文献   

16.
17.
"Skinned" muscle fibers, single fibers from the frog semitendinosus muscle in which the sarcolemma had been removed, could be reversibly activated by electrical stimulation. Electrical responsiveness was abolished when the skinned fiber was prepared from a muscle exposed to a cardiac glycoside, and the development of responsiveness was delayed when the muscle was bathed in high potassium solution. The findings were taken as evidence that active sodium-potassium exchange across the internal membranes restored electrical excitability, after the sarcolemma had been removed, by establishing a potential gradient across the internal membranes. In general, the contractions were graded with the strength of the applied current. On occasion, however, "all-or-none" type responses were seen, raising the possibility that the internal membranes were capable of an electrically regenerative response. Activation could also be produced by an elevation of the intracellular chloride ion concentration or a decrease in the intracellular potassium, ion concentration, suggesting that depolarization of some element of the internal membrane system, that is, a decrease in the potential of the lumen of the internal membrane system relative to the potential of the myofibrillar space, was responsible for activation in these experiments. The distribution of both the electrically induced contractions and those produced by changes in the intracellular ion concentrations indicated that the responsive element of the internal membrane system was electrically continuous over many sarcomeres.  相似文献   

18.
Calciseptine is a natural peptide consisting of 60 amino acids with four disulfide bonds. The peptide is a natural L-type Ca2+-channel blocker in heart and other systems, but its actions in skeletal muscle have not been previously described. The aim of this study is to characterize the effects of calciseptine on L-type Ca2+ channels of skeletal muscle and on contraction. Whole-cell, patch-clamp experiments were performed to record Ca2+ currents (I Ca) from mouse myotubes, whereas Vaseline-gap voltage-clamp experiments were carried out to record I Ca from frog skeletal muscle fibers. We found that calciseptine acts as a channel agonist in skeletal muscle, increasing peak I Ca by 37% and 49% in these two preparations. Likewise, the peptide increased intramembrane charge movement, though it had little effect on contraction. The molecular analysis of the peptide indicated the presence of a local, electrostatic potential that resembles that of the 1,4-dihydropyridine agonist Bay K 8644. These observations suggest that calciseptine shares the properties of 1,4-dihydropyridine derivatives in modulating the permeation of divalent cations through L-type channels. Received: 18 December 2000/Revised: 16 July 2001  相似文献   

19.
Radioautography has been used to localize 45Ca in isotopically labeled frog skeletal muscle fibers which had been quickly frozen during a maintained tetanus, a declining tetanus, or during the period immediately following a tetanus or a contracture. During a tetanus almost all of the myofibrillar 45Ca is localized in the region of the sarcomere occupied by the thin filaments. The amount varies with the tension being developed by the muscle. The movement of calcium within the reticulum from the tubular portion to the terminal cisternae during the posttetanic period has a half-time of about 9 sec at room temperature and a Q10 of about 1.7. Repolarization is not necessary for this movement. Evidence is given to support the notion that most calcium efflux from the cell occurs from the terminal cisternae into the transverse tubules.  相似文献   

20.
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca2+ on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca2+ and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca2+ allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca2+-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca2+, troponin operates as an inhibitor, while in activated muscles at high Ca2+, it acts as a promoter to initiate contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号