首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The charge on the side chain of the internal pore residue lysine 519 (K519) of the Torpedo ClC-0 chloride (Cl-) channel affects channel conductance. Experiments that replace wild-type (WT) lysine with neutral or negatively charged residues or that modify the K519C mutant with various methane thiosulfonate (MTS) reagents show that the conductance of the channel decreases when the charge at position 519 is made more negative. This charge effect on the channel conductance diminishes in the presence of a high intracellular Cl- concentration ([Cl-]i). However, the application of high concentrations of nonpermeant ions, such as glutamate or sulfate (SO42-), does not change the conductance, suggesting that the electrostatic effects created by the charge at position 519 are unlikely due to a surface charge mechanism. Another pore residue, glutamate 127 (E127), plays an even more critical role in controlling channel conductance. This negatively charged residue, based on the structures of the homologous bacterial ClC channels, lies 4-5 A from K519. Altering the charge of this residue can influence the apparent Cl- affinity as well as the saturated pore conductance in the conductance-Cl- activity curve. Amino acid residues at the selectivity filter also control the pore conductance but mutating these residues mainly affects the maximal pore conductance. These results suggest at least two different conductance determinants in the pore of ClC-0, consistent with the most recent crystal structure of the bacterial ClC channel solved to 2.5 A, in which multiple Cl--binding sites were identified in the pore. Thus, we suggest that the occupancy of the internal Cl--binding site is directly controlled by the charged residues located at the inner pore mouth. On the other hand, the Cl--binding site at the selectivity filter controls the exit rate of Cl- and therefore determines the maximal channel conductance.  相似文献   

2.
JAK2 (Janus kinase-2) is activated by cell shrinkage and may thus participate in cell volume regulation. Cell volume regulatory ion channels include the small conductance Cl(-) channels ClC-2. The present study thus explored whether JAK2 influences ClC-2 activity. To this end, ClC-2 was expressed in Xenopus oocytes with or without wild type JAK2, active (V617F)JAK2 or inactive (K882E)JAK2 and the Cl(-) channel activity determined by dual electrode voltage clamp. Expression of ClC-2 was followed by a marked increase of cell membrane conductance. The conductance was significantly decreased following coexpression of JAK2 or (V617F)JAK2, but not by coexpression of (K882E)JAK2. Exposure of the oocytes expressing ClC-2 together with (V617F)JAK2 to the JAK2 inhibitor AG490 (40 μM) resulted in a gradual increase of the conductance. According to chemiluminescence JAK2 decreased the channel protein abundance in the cell membrane. The decline of conductance in ClC-2 and (V617F)JAK2 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 μM) was similar in oocytes expressing ClC-2 with (V617F)JAK2 and oocytes expressing ClC-2 alone, indicating that (V617F)JAK2 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. In conclusion, JAK2 down-regulates ClC-2 activity and thus counteracts Cl(-) exit, an effect which may impact on cell volume regulation.  相似文献   

3.
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate.  相似文献   

4.
Li Y  Yu WP  Lin CW  Chen TY 《Biophysical journal》2005,88(6):3936-3945
Oxidation and reduction (redox) are known to modulate the function of a variety of ion channels. Here, we report a redox regulation of the function of ClC-0, a chloride (Cl(-)) channel from the Torpedo electric organ. The study was motivated by the occasional observation of oocytes with hyperpolarization-activated Cl(-) current when these oocytes expressed ClC-0. We find that these atypical recording traces can be turned into typical ClC-0 current by incubating the oocyte in millimolar concentrations of reducing agents, suggesting that the channel function is regulated by oxidation and reduction. The redox control apparently results from an effect of oxidation on the slow (inactivation) gating: oxidation renders it more difficult for the channel to recover from the inactivated states. Introducing the point mutation C212S in ClC-0 suppresses the inactivation state, and this inactivation-suppressed mutant is no longer sensitive to the inhibition by oxidizing reagents. However, C212 is probably not the target for the redox reaction because the regulation of the inactivation gating by oxidation is still present in a pore mutant (K165C/K165 heterodimer) in which the C212S mutation is present. Taking advantage of the K165C/K165 heterodimer, we further explore the oxidation effect in ClC-0 by methane thiosulfonate (MTS) modifications. We found that trimethylethylammonium MTS modification of the introduced cysteine can induce current in the K165C/K165 heterodimer, an effect attributed to the recovery of the channel from the inactivation state. The current induction by MTS reagents is subjected to redox controls, and thus the extent of this current induction can serve as an indicator to report the oxidation state of the channel. These results together suggest that the inactivation gating of ClC-0 is affected by redox regulation. The finding also provides a convenient method to "cure" those atypical recording traces of ClC-0 expressed in Xenopus oocytes.  相似文献   

5.
ClC-0 is a chloride channel whose gating is sensitive to voltage, chloride, and pH. In a previous publication, we showed that the K149C mutation causes a +70-mV shift in the voltage dependence of ClC-0 fast gating. In this paper we analyze the effects of a series of mutations at K149 on the voltage and chloride dependence of gating. By fitting our data to the previously proposed four-state model for ClC-0 fast gating, we show which steps in fast-gate opening are likely to be affected by these mutations. Computational analysis of mutant ClC-0 homology models show electrostatic contributions to chloride binding that may partially account for the effects of K149 on gating. The analysis of gating kinetics in combination with the available structural information suggests some of the structural changes likely to underpin fast-gate opening.  相似文献   

6.
ClC-4 and ClC-5 are mammalian ClC isoforms with unique ion conduction and gating properties. Macroscopic current recordings in heterologous expression systems revealed very small currents at negative potentials, whereas a substantially larger instantaneous current amplitude and a subsequent activation were observed upon depolarization. Neither the functional basis nor the physiological impact of these channel features are currently understood. Here, we used whole-cell recordings to study pore properties of human ClC-4 channels heterologously expressed in tsA201 or HEK293 cells. Variance analysis demonstrated that the prominent rectification of the instantaneous macroscopic current amplitude is due to a voltage-dependent unitary current conductance. The single channel amplitudes are very small, i.e., 0.10 +/- 0.02 pA at +140 mV for external Cl(-) and internal I(-). Conductivity and permeability sequences were determined for various external and internal anions, and both values increase for anions with lower dehydration energies. ClC-4 exhibits pore properties that are distinct from other ClC isoforms. These differences can be explained by assuming differences in the size of the pore narrowing and the electrostatic potentials within the ion conduction pathways.  相似文献   

7.
We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.  相似文献   

8.
The conduction properties of ClC-0 and ClC-1 chloride channels are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We create an open-state configuration of the prokaryotic ClC Cl(-) channel using its known crystallographic structure as a basis. Two residues that are occluding the channel are slowly pushed outward with molecular dynamics to create a continuous ion-conducting path with the minimum radius of 2.5 A. Then, retaining the same pore shape, the prokaryotic ClC channel is converted to either ClC-0 or ClC-1 by replacing all the nonconserved dipole-containing and charged amino acid residues. Employing open-state ClC-0 and ClC-1 channel models, current-voltage curves consistent with experimental measurements are obtained. We find that conduction in these pores involves three ions. We locate the binding sites, as well as pinpointing the rate-limiting steps in conduction, and make testable predictions about how the single channel current across ClC-0 and ClC-1 will vary as the ionic concentrations are increased. Finally, we demonstrate that a ClC-0 homology model created from an alternative sequence alignment fails to replicate any of the experimental observations.  相似文献   

9.
CLC chloride channels comprise a gene family with nine mammalian members. Probably all CLC channels form homodimers, and some CLC proteins may also associate to heterodimers. ClC-0 and ClC-1, the only CLC channels investigated at the single-channel level, display two conductances of equal size which are thought to result from two separate pores, formed individually by the two monomers. We generated concatemeric channels containing one subunit of ClC-0 together with one subunit of ClC-1 or ClC-2. They should display two different conductances if one monomer were sufficient to form one pore. Indeed, we found a 8-picosiemens (pS) conductance (corresponding to ClC-0) that was associated with either a 1.8-pS (ClC-1) or a 2.8-pS (ClC-2) conductance. These conductances retained their typical gating, but the slow gating of ClC-0 that affects both pores simultaneously was lost. ClC-2 and ClC-0 current components were modified by point mutations in the corresponding subunit. The ClC-2 single pore of the mixed dimer was compared with the pores in the ClC-2 homodimer and found to be unaltered. We conclude that each monomer individually forms a gated pore. CLC dimers in general must be imagined as having two pores, as shown previously for ClC-0.  相似文献   

10.
The gating of ClC-0, the voltage-dependent Cl- channel from Torpedo electric organ, is strongly influenced by Cl- ions in the external solution. Raising external Cl- over the range 1-600 mM favors the fast- gating open state and disfavors the slow-gating inactivated state. Analysis of purified single ClC-0 channels reconstituted into planar lipid bilayers was used to identify the role of Cl- ions in the channel's fast voltage-dependent gating process. External, but not internal, Cl- had a major effect on the channel's opening rate constant. The closing rate was more sensitive to internal Cl- than to external Cl-. Both opening and closing rates varied with voltage. A model was derived that postulates (a) that in the channel's closed state, Cl- is accessible to a site located at the outer end of the conduction pore, where it binds in a voltage-independent fashion, (b) that this closed conformation can open, whether liganded by Cl- or not, in a weakly voltage-dependent fashion, (c) that the Cl(-)-liganded closed channel undergoes a conformational change to a different closed state, such that concomitant with this change, Cl- ion moves inward, conferring voltage-dependence to this step, and (d) that this new Cl(-)- liganded closed state opens with a very high rate. According to this picture, Cl- movement within the pre-open channel is the major source of voltage dependence, and charge movement intrinsic to the channel protein contributes very little to voltage-dependent gating of ClC-0. Moreover, since the Cl- activation site is probably located in the ion conduction pathway, the fast gating of ClC-0 is necessarily coupled to ion conduction, a nonequilibrium process.  相似文献   

11.
Skeletal muscle acidosis during exercise has long been thought to be a cause of fatigue, but recent studies have shown that acidosis maintains muscle excitability and opposes fatigue by decreasing the sarcolemmal chloride conductance. ClC-1 is the primary sarcolemmal chloride channel and has a clear role in controlling muscle excitability, but recombinant ClC-1 has been reported to be activated by acidosis. Following our recent finding that intracellular ATP inhibits ClC-1, we investigated here the interaction between pH and ATP regulation of ClC-1. We found that, in the absence of ATP, intracellular acidosis from pH 7.2 to 6.2 inhibited ClC-1 slightly by shifting the voltage dependence of common gating to more positive potentials, similar to the effect of ATP. Importantly, the effects of ATP and acidosis were cooperative, such that ATP greatly potentiated the effect of acidosis. Adenosine had a similar effect to ATP at pH 7.2, but acidosis did not potentiate this effect, indicating that the phosphates of ATP are important for this cooperativity, possibly due to electrostatic interactions with protonatable residues of ClC-1. A protonatable residue identified by molecular modeling, His-847, was found to be critical for both pH and ATP modulation and may be involved in such electrostatic interactions. These findings are now consistent with, and provide a molecular explanation for, acidosis opposing fatigue by decreasing the chloride conductance of skeletal muscle via inhibition of ClC-1. The modulation of ClC-1 by ATP is a key component of this molecular mechanism.  相似文献   

12.
Single-channel recordings of the currents mediated by the muscle Cl- channel, ClC-1, expressed in Xenopus oocytes, provide the first direct evidence that this channel has two equidistant open conductance levels like the Torpedo ClC-0 prototype. As for the case of ClC-0, the probabilities and dwell times of the closed and conducting states are consistent with the presence of two independently gated pathways with approximately 1.2 pS conductance enabled in parallel via a common gate. However, the voltage dependence of the common gate is different and the kinetics are much faster than for ClC-0. Estimates of single-channel parameters from the analysis of macroscopic current fluctuations agree with those from single-channel recordings. Fluctuation analysis was used to characterize changes in the apparent double-gate behavior of the ClC-1 mutations I290M and I556N causing, respectively, a dominant and a recessive form of myotonia. We find that both mutations reduce about equally the open probability of single protopores and that mutation I290M yields a stronger reduction of the common gate open probability than mutation I556N. Our results suggest that the mammalian ClC-homologues have the same structure and mechanism proposed for the Torpedo channel ClC-0. Differential effects on the two gates that appear to modulate the activation of ClC-1 channels may be important determinants for the different patterns of inheritance of dominant and recessive ClC-1 mutations.  相似文献   

13.
The mechanism of ion permeation through Na+ channels that have been modified by batrachotoxin (BTX) and inserted into planar bilayers has been generally described by models based on single-ion occupancy, with or without an influence of negative surface charge, depending on the tissue source. For native Na+ channels there is evidence suggestive of a multi-ion conduction mechanism. To explore the question of ion occupancy, we have reexamined permeation of Na+, Li+, and K+ through BTX-modified Na+ channels from rat skeletal muscle. Single-channel current-voltage (I-V) behavior was studied in neutral lipid bilayers in the presence of symmetrical Na+ concentrations ranging from 0.5 to 3,000 mM. The dependence of unitary current on the mole fraction of Na+ was also examined in symmetrical mixtures of Na(+)-Li+ and Na(+)-K+ at a constant total ionic strength of 206 and 2,006 mM. The dependence of unitary conductance on symmetrical Na+ concentration does not exhibit Michaelis-Menten behavior characteristic of single-ion occupancy but can be simulated by an Eyring-type model with three barriers and two sites (3B2S) that includes double occupancy and ion-ion repulsion. Best-fit energy barrier profiles for Na+, Li+, and K+ were obtained by nonlinear curve fitting of I-V data using the 3B2S model. The Na(+)-Li+ and Na(+)-K+ mole-fraction experiments do not exhibit an anomalous mole-fraction effect. However, the 3B2S model is able to account for the biphasic dependence of unitary conductance on symmetrical [Na+] that is suggestive of multiple occupancy and the monotonic dependence of unitary current on the mole fraction of Na+ that is compatible with single or multiple occupancy. The best-fit 3B2S barrier profiles also successfully predict bi-ionic reversal potentials for Na(+)-Li+ and Na(+)-K+ in both orientations across the channel. Our experimental and modeling results reconcile the dual personality of ion permeation through Na+ channels, which can display features of single or multiple occupancy under various conditions. To a first approximation, the 3B2S model developed for this channel does not require corrections for vestibule surface charge. However, if negative surface charges of the protein do influence conduction, the conductance behavior in the limit of low [Na+] does not correspond to a Gouy-Chapman model of planar surface charge.  相似文献   

14.
Ramjeesingh M  Li C  Huan LJ  Garami E  Wang Y  Bear CE 《Biochemistry》2000,39(45):13838-13847
The chloride channel ClC-2 is thought to be essential for chloride homeostasis in neurons and critical for chloride secretion by the developing respiratory tract. In the present work, we investigated the quaternary structure of ClC-2 required to mediate chloride conduction. We found using chemical cross-linking and a novel PAGE system that tagged ClC-2 expressed in Sf9 cells exists as oligomers. Fusion of membranes from Sf9 cells expressing this protein confers double-barreled channel activity, with each pore exhibiting a unitary conductance of 32 pS. Polyhistidine-tagged ClC-2 from Sf9 cells can be purified as monomers, dimers, and tetramers. Purified, reconstituted ClC-2 monomers do not possess channel function whereas both purified ClC-2 dimers and tetramers do mediate chloride flux. In planar bilayers, reconstitution of dimeric ClC-2 leads to the appearance of a single, anion selective 32 pS pore, and tetrameric ClC-2 confers double-barreled channel activity similar to that observed in Sf9 membranes. These reconstitution studies suggest that a ClC-2 dimer is the minimum functional structure and that ClC-2 tetramers likely mediate double-barreled channel function.  相似文献   

15.
The goal of this study was to determine the mechanism of lubiprostone activation of epithelial chloride transport. Lubiprostone is a bicyclic fatty acid approved for the treatment of constipation [1]. There is uncertainty, however, as to how lubiprostone increases epithelial chloride transport. Direct stimulation of ClC-2 and CFTR chloride channels as well as stimulation of these channels via the EP4 receptor has been described [2], [3], [4] and [5]. To better define this mechanism, two-electrode voltage clamp was used to assay Xenopus oocytes expressing ClC-2, with or without co-expression of the EP4 receptor or β adrenergic receptor (βAR), for changes in conductance elicited by lubiprostone. Oocytes co-expressing CFTR and either βAR or the EP4 receptor were also studied. In oocytes co-expressing ClC-2 and βAR conductance was stimulated by hyperpolarization and acidic pH (pH = 6), but there was no response to the β adrenergic agonist, isoproterenol. Oocytes expressing ClC-2 only or co-expressing ClC-2 and EP4 did not respond to the presence of 0.1, 1, or 10 μM lubiprostone in the superperfusate. Oocytes co-expressing CFTR and βAR did not respond to hyperpolarization, acidic pH, or 1 μM lubiprostone. However, conductance was elevated by isoproterenol and inhibited by CFTRinh172. Co-expression of CFTR and EP4 resulted in lubiprostone-stimulated conductance, which was also sensitive to CFTRinh172. The EC50 for lubiprostone mediated CFTR activation was ∼10 nM. These results demonstrate no direct action of lubiprostone on either ClC-2 or CFTR channels expressed in oocytes. However, the results confirm that CFTR can be activated by lubiprostone via the EP4 receptor in oocytes.  相似文献   

16.
Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activated by hyperpolarization and elevated intracellular Cl(-) concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl(-) current in cells from Clcn2(-/-) mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2(-/-) mice. Additionally, neither a compensatory increase in Cftr Cl(-) channel protein expression nor in Cftr-like Cl(-) currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl(-) channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium.  相似文献   

17.
Conduction in inward rectifier, K+-channels in Aplysia neuron and Ba++ blockade of these channels were studied by rapid measurement of the membrane complex admittance in the frequency range 0.05 to 200 Hz during voltage clamps to membrane potentials in the range -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]0) from complex admittances determined at other [K+]0 and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 microS) and the relaxation time (4-8 ms) of K+ rectifier channels at [K+]0 = 40 mM were determined by curve fits of admittance data by a membrane admittance model based on the linearized Hodgkin-Huxley equations. The conductance of inward rectifier, K+ channels at a membrane potential of -80 mV had a square-root dependence on external K+ concentration, and the relaxation time increased from 2 to 7.5 ms for [K+]0 = 20 and 100 mM, respectively. The complex conductance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the membrane admittance during blockage of inward rectifier, K+ channels (at -35 mV and [Ba++]0 = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the complex conductance of inward rectifier, K+ channels and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process.  相似文献   

18.
Janus kinase-3 (JAK3) fosters proliferation and counteracts apoptosis of lymphocytes and tumor cells. The gain of function mutation A572VJAK3 has been discovered in acute megakaryoplastic leukemia. JAK3 is inactivated by replacement of lysine by alanine in the catalytic subunit (K855AJAK3). Regulation of cell proliferation and apoptosis involves altered activity of Cl? channels. The present study, thus, explored whether JAK3 modifies the function of the small conductance Cl? channel ClC-2. To this end, ClC-2 was expressed in Xenopus oocytes with or without wild-type JAK3, A568VJAK3 or K851AJAK3, and the Cl? channel activity determined by dual-electrode voltage clamp. Channel protein abundance in the cell membrane was determined utilizing chemiluminescence. As a result, expression of ClC-2 was followed by a marked increase of cell membrane conductance. The conductance was significantly decreased following coexpression of JAK3 or A568VJAK3, but not by coexpression of K851AJAK3. Exposure of the oocytes expressing ClC-2 together with A568VJAK3 to the JAK3 inhibitor WHI-P154 (4-[(3’-bromo-4’-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline, 22 μM) increased the conductance. Coexpression of A568VJAK3 decreased the ClC-2 protein abundance in the cell membrane of ClC-2 expressing oocytes. The decline of conductance in ClC-2 and A568VJAK3 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 μM) was similar in oocytes expressing ClC-2 with A568VJAK3 and oocytes expressing ClC-2 alone, indicating that A568VJAK3 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. In conclusion, JAK3 downregulates ClC-2 activity and thus counteracts Cl? exit—an effect possibly influencing cell proliferation and apoptosis.  相似文献   

19.
Several cloned ClC-type Cl channels open and close in a voltage-dependent manner. The Torpedo electric organ Cl channel, ClC-0, is the best studied member of this gene family. ClC-0 is gated by a fast and a slow gating mechanism of opposite voltage direction. Fast gating is dependent on voltage and on the external and internal Cl concentration, and it has been proposed that the permeant anion serves as the gating charge in ClC-0 (Pusch, M., U. Ludewig, A. Rehfeldt, and T.J. Jentsch. 1995. Nature (Lond.). 373:527–531). The deactivation at negative voltages of the muscular ClC-1 channel is similar but not identical to ClC-0. Different from the extrinsic voltage dependence suggested for ClC-0, an intrinsic voltage sensor had been proposed to underlie the voltage dependence in ClC-1 (Fahlke, C., R. Rüdel, N. Mitrovic, M. Zhou, and A.L. George. 1995. Neuron. 15:463–472; Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rüdel. 1996. Biophys. J. 71:695–706). The gating model for ClC-1 was partially based on the properties of a point-mutation found in recessice myotonia (D136G). Here we investigate the functional effects of mutating the corresponding residue in ClC-0 (D70). Both the corresponding charge neutralization (D70G) and a charge conserving mutation (D70E) led to an inwardly rectifying phenotype resembling that of ClC-1 (D136G). Several other mutations at very different positions in ClC-0 (K165R, H472K, S475T, E482D, T484S, T484Q), however, also led to a similar phenotype. In one of these mutants (T484S) the typical wild-type gating, characterized by a deactivation at negative voltages, can be partially restored by using external perchlorate (ClO4 ) solutions. We conclude that gating in ClC-0 and ClC-1 is due to similar mechanisms. The negative charge at position 70 in ClC-0 does not specifically confer the voltage sensitivity in ClC-channels, and there is no need to postulate an intrinsic voltage sensor in ClC-channels.  相似文献   

20.
The chloride channel ClC-2 has been implicated inneonatal airway chloride secretion. To assess its role in secretion by the small intestine, we assessed its subcellular expression in ilealsegments obtained from mice and studied the chloride transport properties of this tissue. Chloride secretion across the mucosa ofmurine ileal segments was assessed in Ussing chambers as negative short-circuit current (Isc). If ClC-2contributed to chloride secretion, we predicted on the basis ofprevious studies that negative Isc would bestimulated by dilution of the mucosal bath and that this response woulddepend on chloride ion and would be blocked by the chloride channelblocker 5-nitro-2-(3-phenylpropylamino) benzoic acid but not by DIDS.In fact, mucosal hypotonicity did stimulate a chloride-dependent changein Isc that exhibited pharmacological propertiesconsistent with those of ClC-2. This secretory response is unlikely tobe mediated by the cystic fibrosis transmembrane conductance regulator(CFTR) channel because it was also observed in CFTR knockout animals.Assessment of the native expression pattern of ClC-2 protein in themurine intestinal epithelium by confocal and electron microscopy showedthat ClC-2 exhibits a novel distribution, a distribution patternsomewhat unexpected for a channel involved in chloride secretion.Immunolabeled ClC-2 was detected predominantly at the tight junctioncomplex between adjacent intestinal epithelial cells.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号