首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

2.
Transmembrane helices and the helical bundles which they form are the major building blocks of membrane proteins. Since helices are characterized by a given periodicity, it is possible to search for patterns of traits which typify one side of the helix and not the other (e.g. amphipathic helices contain a polar and apolar sides). Using Fourier transformation we have analyzed solved membrane protein structures as well as sequences of membrane proteins from the Swiss-Prot database. The traits searched included aromaticity, volume and ionization. While a number of motifs were already recognized in the literature, many were not. One particular example involved helix VII of lactose permease which contains seven aromatic residues on six helical turns. Similarly six glycine residues in four consecutive helical turns were identified as forming a motif in the chloride channel. A tabulation of all the findings is presented as well as a possible rationalization of the function of the motif.  相似文献   

3.
Acylation of proteins is known to mediate membrane attachment and to influence subcellular sorting. Here, we report that acylation can stabilize secondary structure. Circular dichroism spectroscopy showed that N‐terminal attachment of acyl chains decreases the ability of an intrinsically flexible hydrophobic model peptide to refold from an α‐helical state to β‐sheet in response to changing solvent conditions. Acylation also stabilized the membrane‐embedded α‐helix. This increase of global helix stability did not result from decreased local conformational dynamics of the helix backbone as assessed by deuterium/hydrogen‐exchange experiments. We concluded that acylation can stabilize the structure of intrinsically dynamic helices and may thus prevent misfolding.  相似文献   

4.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

5.
The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.  相似文献   

6.
Polar mutations in transmembrane alpha helices may alter the structural details of the hydrophobic sequences and control intermolecular contacts. We have performed molecular dynamics simulations on the transmembrane domain of the proto-oncogenic and the oncogenic forms of the Neu receptor in a fluid DMPC bilayer to test whether the Glu mutation which replaces the Val residue at position 664 may alter the helical structure and its insertion in the membrane. The simulations show that the wild and the mutant forms of the transmembrane domain have a different behavior in the bilayer. The native transmembrane sequence is found to be more flexible than in the presence of the Glu mutation, characterized by a tendency to pi deformation to accommodate the helix length to the membrane thickness. The mutant form of this domain does not evidence helical deformation in the present simulation. Hydrophobic matching is achieved both by a larger helix tilt and a vertical shift of the helix towards the membrane interface, favoring the accessibility of the Glu side chain to the membrane environment. A rapid exchange of hydrogen bond interactions with the surrounding water molecules and the lipid headgroups is observed. The difference in the behavior between the two peptides in a membrane environment was also observed experimentally. Both simulation and experimental results agree with the hypothesis that water may act as an intermediate for the formation of cross links between the facing Glu side chains stabilizing the dimer.  相似文献   

7.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

8.
Ashish Shelar  Manju Bansal 《Proteins》2014,82(12):3420-3436
α‐helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α‐helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C‐termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α‐helices in a high‐resolution dataset of integral α‐helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C‐termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near‐helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420–3436. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Chen CM  Chen CC 《Biophysical journal》2003,84(3):1902-1908
A lattice model of membrane proteins with a composite energy function is proposed to study their folding dynamics and native structures using Monte Carlo simulations. This model successfully predicts the seven helix bundle structure of sensory rhodopsin I by practicing a three-stage folding. Folding dynamics of a transmembrane segment into a helix is further investigated by varying the cooperativity in the formation of alpha helices for both random folding and assisted folding. The chain length dependence of the folding time of a hydrophobic segment to a helical state is studied for both free and anchored chains. An unusual length dependence in the folding time of anchored chains is observed.  相似文献   

10.
The helical hairpin, two closely spaced transmembrane helices separated by a short turn, is a recurring structural element in integral membrane proteins, and may serve as a compact unit that inserts into the membrane en bloc. Previously, we have determined the propensities of the 20 natural amino acids, when present in the middle of a long hydrophobic stretch, to induce the formation of a helical hairpin with a lumenally exposed turn during membrane protein assembly into the endoplasmic reticulum membrane. Here, we present results from a similar set of measurements, but with the turn placed on the cytoplasmic side of the membrane. We find that a significantly higher number of turn-promoting residues need to be present to induce a cytoplasmic turn compared to a lumenal turn, and that, in contrast to the lumenal turn, the positively charged residues Arg and Lys are the strongest turn-promoters in cytoplasmic turns. These results suggest that the process of turn formation between transmembrane helices is different for lumenal and cytoplasmic turns.  相似文献   

11.
D J Tobias  C L Brooks 《Biochemistry》1991,30(24):6059-6070
We used molecular dynamics simulations to study the folding/unfolding of one of turn of an alpha helix in Ac-(Ala)3-NHMe and Ac-(Val)3-NHMe. Using specialized sampling techniques, we computed free energy surfaces as functions of a conformational coordinate that corresponds to alpha helices at small values and to extended conformations at large values. Analysis of the peptide conformations populated during the simulations showed that alpha helices, reverse turns, and extended conformations correspond to minima on the free energy surfaces of both peptides. The free energy difference between alpha helix and extended conformations, determined from the equilibrium constants for helix unfolding, is approximately -1 kcal/mol for Ac-(Ala)3-NHMe and -5 kcal/mol for Ac-(Val)3-NHMe. The mechanism observed in our simulations, which includes reverse turns as important intermediates along the helix folding/unfolding pathway, is consistent with a mechanism proposed previously. Our results predict that both peptides (but especially the Ala peptide) have a much larger equilibrium constant for helix initiation than is predicted by the helix-coil transition theory with the host-guest parameters. We also predict a much greater difference in the equilibrium constants than the theory predicts. Insofar as helix initiation is concerned, our results suggest that the large difference between the helical propensities of Ala and Val cannot be explained by simple concepts such as side-chain rotamer restriction or unfavorable steric interactions. Rather, the origin of the difference appears to be quite complicated because it involves subtle differences in the solvation of the two peptides. The two peptides have similar turn-extended equilibria but very different helix-turn equilibria, and the difference in helical propensities reflects the fact that the helix-turn equilibrium strongly favors the turns in Ac-(Val)3-NHMe, while it favors the helices in Ac-(Ala)3-NHMe. We also computed thermodynamic decompositions of the free energy surfaces, and these revealed that the helix-turn equilibria are vastly different primarily because the changes in peptide-water interactions that accompany helix-to-turn conformational changes are qualitatively different for the two peptides.  相似文献   

12.
Helix kinks are a common feature of α‐helical membrane proteins, but are thought to be rare in soluble proteins. In this study we find that kinks are a feature of long α‐helices in both soluble and membrane proteins, rather than just transmembrane α‐helices. The apparent rarity of kinks in soluble proteins is due to the relative infrequency of long helices (≥20 residues) in these proteins. We compare length‐matched sets of soluble and membrane helices, and find that the frequency of kinks, the role of Proline, the patterns of other amino acid around kinks (allowing for the expected differences in amino acid distributions between the two types of protein), and the effects of hydrogen bonds are the same for the two types of helices. In both types of protein, helices that contain Proline in the second and subsequent turns are very frequently kinked. However, there are a sizeable proportion of kinked helices that do not contain a Proline in either their sequence or sequence homolog. Moreover, we observe that in soluble proteins, kinked helices have a structural preference in that they typically point into the solvent. Proteins 2014; 82:1960–1970. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

13.
Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution, we detected the arrival of dynamin at coated pits and defined dynamin dimers as the preferred assembly unit. We also used live-cell spinning-disk confocal microscopy calibrated by single-molecule EGFP detection to determine the number of dynamins recruited to the coated pits. A large fraction of budding coated pits recruit between 26 and 40 dynamins (between 1 and 1.5 helical turns of a dynamin collar) during the recruitment phase associated with neck fission; 26 are enough for coated vesicle release in cells partially depleted of dynamin by RNA interference. We discuss how these results restrict models for the mechanism of dynamin-mediated membrane scission.  相似文献   

14.
Three solution NMR experiments on a uniformly 15N labeled membrane protein in micelles provide sufficient information to describe the structure, topology, and dynamics of its helices, as well as additional information that characterizes the principal features of residues in terminal and inter-helical loop regions. The backbone amide resonances are assigned with an HMQC-NOESY experiment and the backbone dynamics are characterized by a 1H-15N heteronuclear NOE experiment, which clearly distinguishes between the structured helical residues and the more mobile residues in the terminal and interhelical loop regions of the protein. The structure and topology of the helices are described by Dipolar waves and PISA wheels derived from experimental measurements of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs). The results show that the membrane-bound form of Pf1 coat protein has a 20-residue trans-membrane hydrophobic helix with an orientation that differs by about 90° from that of an 8-residue amphipathic helix. This combination of three-experiments that yields Dipolar waves and PISA wheels has the potential to contribute to high-throughput structural characterizations of membrane proteins.  相似文献   

15.
In this work, molecular dynamics simulations were used to examine the consequences of a variety of analogs of cecropin A on lipid bilayers. Analog sequences were constructed by replacing either the N- or C-terminal helix with the other helix in native or reverse sequence order, by making palindromic peptides based on both the N- and C-terminal helices, and by deleting the hinge region. The structure of the peptides was monitored throughout the simulation. The hinge region appeared not to assist in maintaining helical structure but help in motion flexibility. In general, the N-terminal helix of peptides was less stable than the C-terminal one during the interaction with anionic lipid bilayers. Sequences with hydrophobic helices tended to regain helical structure after an initial loss while sequences with amphipathic helices were less able to do this. The results suggests that hydrophobic design peptides have a high structural stability in an anionic membrane and are the candidates for experimental investigation.  相似文献   

16.
Apolipoprotein A-I (apoA-I) is the major protein associated with high density lipoprotein (HDL), and its plasma levels have been correlated with protection against atherosclerosis. Unfortunately, the structural basis of this phenomenon is not fully understood. Over 25 years of study have produced two general models of apoA-I structure in discoidal HDL complexes. The "belt" model states that the amphipathic helices of apoA-I are aligned perpendicular to the acyl chains of the lipid bilayer, whereas the "picket fence" model argues that the helices are aligned parallel with the acyl chains. To distinguish between the two models, various single tryptophan mutants of apoA-I were analyzed in reconstituted, discoidal HDL particles composed of phospholipids containing nitroxide spin labels at various positions along the acyl chain. We have previously used this technique to show that the orientation of helix 4 of apoA-I is most consistent with the belt model. In this study, we performed additional control experiments on helix 4, and we extended the results by performing the same analysis on the remaining 22-mer helices (helices 1, 2, 5, 6, 7, 8, and 10) of human apoA-I. For each helix, two different mutants were produced that each contained a probe Trp occurring two helical turns apart. In the belt model, the two Trp residues in each helix should exhibit maximal quenching at the same nitroxide group position on the lipid acyl chains. For the picket fence model, maximal quenching should occur at two different levels in the bilayer. The results show that the majority of the helices are in an orientation that is consistent with a belt model, because most Trp residues localized to a position about 5 A from the center of the bilayer. This study corroborates a belt hypothesis for the majority of the helices of apoA-I in phospholipid discs.  相似文献   

17.
A segment-based approach to protein secondary structure prediction.   总被引:4,自引:0,他引:4  
Amino acid sequence patterns have been used to identify the location of turns in globular proteins [Cohen et al. (1986) Biochemistry 25, 266-275]. We have developed sequence patterns that facilitate the prediction of helices in all helical proteins. Regular expression patterns recognize the component parts of a helix: the amino terminus (N-cap), the core of the helix (core), and the carboxy terminus (C-cap). These patterns recognize the core features of helices with a 95% success rate and the N- and C-capping features with success rates of 56% and 48%, respectively. A metapattern language, ALPPS, coordinates the recognition of turns and helical components in a scheme that predicts the location and extent of alpha-helices. On the basis of raw residue scoring, a 71% success rate is observed. By focusing on the recognition of core helical features, we achieve a 78% success rate. Amended scoring procedures are presented and discussed, and comparisons are made to other predictive schemes.  相似文献   

18.
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine–serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a “dimer of dimers.” In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.  相似文献   

19.
The GTPase dynamin catalyzes membrane fission by forming a collar around the necks of clathrin-coated pits, but the specific structural interactions and conformational changes that drive this process remain a mystery. We present the GMPPCP-bound structures of the truncated human dynamin 1 helical polymer at 12.2 ? and a fusion protein, GG, linking human dynamin 1's catalytic G domain to its GTPase effector domain (GED) at 2.2 ?. The structures reveal the position and connectivity of dynamin fragments in the assembled structure, showing that G domain dimers only form between tetramers in sequential rungs of the dynamin helix. Using chemical crosslinking, we demonstrate that dynamin tetramers are made of two dimers, in which the G domain of one molecule interacts in trans with the GED of another. Structural comparison of GG(GMPPCP) to the GG transition-state complex identifies a hydrolysis-dependent powerstroke that may play a role in membrane-remodeling events necessary for fission.  相似文献   

20.
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine–serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a “dimer of dimers.” In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号