首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excitatory amino acid transporters (EAATs) are crucial in maintaining extracellular levels of glutamate, the most abundant excitatory neurotransmitter, below toxic levels. The recent three-dimensional crystal structure of GltPh, an archaeal homolog of the EAATs, provides elegant structural details of this family of proteins, yet we know little about the mechanism of the bacterial transporter. Conflicting reports in the literature have described GltPh as an aspartate transporter driven by Na+ or a glutamate transporter driven by either Na+ or H+. Here we use purified protein reconstituted into liposomes to thoroughly characterize the ion and substrate dependence of the GltPh transport. We confirm that GltPh is a Na+-dependent transporter that is highly selective for aspartate over other amino acids, and we show that transport is coupled to at least two Na+ ions. In contrast to the EAATs, transport via GltPh is independent of H+ and K+. We propose a kinetic model of transport in which at least two Na+ ions are coupled to the cotransport of each aspartate molecule by GltPh, and where an ion- and substrate-free transporter reorients to complete the transport cycle.  相似文献   

2.
Glutamate/Aspartate transporters cotransport three Na+ and one H+ ions with the substrate and countertransport one K+ ion. The binding sites for the substrate and two Na+ ions have been observed in the crystal structure of the archeal homolog GltPh, while the binding site for the third Na+ ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of GltPh, giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na+ ions. They also shed light into Asp/Glu selectivity of GltPh, which is not observed in eukaryotic glutamate transporters.  相似文献   

3.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

4.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

5.
The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1'' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1'' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1'' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.  相似文献   

6.
The glutamate transporter excitatory amino acid carrier 1 (EAAC1) catalyzes the co-transport of three Na+ ions, one H+ ion, and one glutamate molecule into the cell, in exchange for one K+ ion. Na+ binding to the glutamate-free form of the transporter generates a high affinity binding site for glutamate and is thus required for transport. Moreover, sodium binding to the transporters induces a basal anion conductance, which is further activated by glutamate. Here, we used the [Na+] dependence of this conductance as a read-out of Na+ binding to the substrate-free transporter to study the impact of a highly conserved amino acid residue, Thr101, in transmembrane domain 3. The apparent affinity of substrate-free EAAC1 for Na+ was dramatically decreased by the T101A but not by the T101S mutation. Interestingly, in further contrast to EAAC1WT, in the T101A mutant this [Na+] dependence was biphasic. This behavior can be explained by assuming that the binding of two Na+ ions prior to glutamate binding is required to generate a high affinity substrate binding site. In contrast to the dramatic effect of the T101A mutation on Na+ binding, other properties of the transporter, such as its ability to transport glutamate, were impaired but not eliminated. Our results are consistent with the existence of a cation binding site deeply buried in the membrane and involving interactions with the side chain oxygens of Thr101 and Asp367. A theoretical valence screening approach confirms that the predicted site of cation interaction has the potential to be a novel, so far undetected sodium binding site.  相似文献   

7.
Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na+ ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na+ ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na+ ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li+ ions substitute for Na+ at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and 32P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li+ ions to substitute for Na+ ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1.  相似文献   

8.
GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na+ and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na+ binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m−1s−1). At least two sodium ions bind before aspartate. The binding of Na+ requires a very high activation energy (Ea 106.8 kJ mol−1) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na+ concentration present. Binding of aspartate was not observed in the absence of Na+, whereas in the presence of high Na+ concentrations (above the Kd for Na+) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 105 m−1s−1), with low Ea and Q10 values (42.6 kJ mol−1 and 1.8, respectively). We conclude that Na+ binding is most likely the rate-limiting step for substrate binding.  相似文献   

9.
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates l-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na+ over Li+. S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for l-aspartate over d-aspartate and l-glutamate, and lost their selectivity for Na+ over Li+. Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.  相似文献   

10.
Translocation through the extracellular vestibule and binding of leucine in the leucine transporter (LeuT) have been studied with molecular dynamics simulations. More than 0.1 μs of all-atom molecular dynamics simulations have been performed on different combinations of LeuT, bound substrate, and bound structural Na+ ions to describe molecular events involved in substrate binding and in the formation of the occluded state and to investigate the dynamics of this state. Three structural features are found to be directly involved in the initial steps of leucine transport: a Na+ ion directly coordinated to leucine (Na-1), two aromatic residues closing the binding site toward the extracellular vestibule (Tyr-108 and Phe-253), and a salt bridge in the extracellular vestibule (Arg-30 and Asp-404). These features account for observed differences between simulations of LeuT with and without bound substrate and for a possible pathway for leucine binding and thereby formation of the occluded LeuT binding site.  相似文献   

11.
MATE (multidrug and toxic compound extrusion) transporter proteins mediate metabolite transport in plants and multidrug resistance in bacteria and mammals. MATE transporter NorM from Vibrio cholerae is an antiporter that is driven by Na+ gradient to extrude the substrates. To understand the molecular mechanism of Na+‐substrate exchange, molecular dynamics simulation was performed to study conformational changes of both wild‐type and mutant NorM with and without cation bindings. Our results show that NorM is able to bind two Na+ ions simultaneously, one to each of the carboxylic groups of E255 and D371 in the binding pocket. Furthermore, this di‐Na+ binding state is likely more efficient for conformational changes of NorM_VC toward the inward‐facing conformation than single‐Na+ binding state. The observation of two Na+ binding sites of NorM_VC is consistent with the previous study that two sites for ion binding (denoted as Na1/Na2 sites) are found in the transporter LeuT and BetP, another two secondary transporters. Taken together, our findings shed light on the structure rearrangements of NorM on Na+ binding and enrich our knowledge of the transport mechanism of secondary transporters. Proteins 2014; 82:240–249. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Neutral amino acid exchange by the alanine serine cysteine transporter (ASCT)2 was reported to be electroneutral and coupled to the cotransport of one Na+ ion. The cotransported sodium ion carries positive charge. Therefore, it is possible that amino acid exchange is voltage dependent. However, little information is available on the electrical properties of the ASCT2 amino acid transport process. Here, we have used a combination of experimental and computational approaches to determine the details of the amino acid exchange mechanism of ASCT2. The [Na+] dependence of ASCT2-associated currents indicates that the Na+/amino acid stoichiometry is at least 2:1, with at least one sodium ion binding to the amino acid–free apo form of the transporter. When the substrate and two Na+ ions are bound, the valence of the transport domain is +0.81. Consistently, voltage steps applied to ASCT2 in the fully loaded configuration elicit transient currents that decay on a millisecond time scale. Alanine concentration jumps at the extracellular side of the membrane are followed by inwardly directed transient currents, indicative of translocation of net positive charge during exchange. Molecular dynamics simulations are consistent with these results and point to a sequential binding process in which one or two modulatory Na+ ions bind with high affinity to the empty transporter, followed by binding of the amino acid substrate and the subsequent binding of a final Na+ ion. Overall, our results are consistent with voltage-dependent amino acid exchange occurring on a millisecond time scale, the kinetics of which we predict with simulations. Despite some differences, transport mechanism and interaction with Na+ appear to be highly conserved between ASCT2 and the other members of the solute carrier 1 family, which transport acidic amino acids.  相似文献   

13.
Glutamate transporters (GluTs) are the primary regulators of extracellular concentration of the neurotransmitter glutamate in the central nervous system. In this study, we have investigated the dynamics and coupling of the substrate and Na+ binding sites, and the mechanism of cotransport of Na+ ions, using molecular dynamics simulations of a membrane-embedded model of GluT in its apo (empty form) and various Na+- and/or substrate-bound states. The results shed light on the mechanism of the extracellular gate and on the sequence of binding of the substrate and Na+ ions to GluT during the transport cycle. The results suggest that the helical hairpin HP2 plays the key role of the extracellular gate for the substrate binding site, and that the opening and closure of the gate is controlled by substrate binding. GluT adopts an open conformation in the absence of the substrate exposing the binding sites of the substrate and Na+ ions to the extracellular solution. Based on the calculated trajectories, we propose that Na1 is the first element to bind GluT, as it is found to be important for the completion of the substrate binding site. The subsequent binding of the substrate, in turn, is shown to result in an almost complete closure of the extracellular gate and the formation of the Na2 binding site. Finally, binding of Na2 locks the extracellular gate and completes the formation of the occluded state of GluT.  相似文献   

14.
To investigate Na+ binding to the ion-binding sites presented on the cytoplasmic side of the Na,K-ATPase, equilibrium Na+-titration experiments were performed using two fluorescent dyes, RH421 and FITC, to detect protein-specific actions. Fluorescence changes upon addition of Na+ in the presence of various Mg2+ concentrations were similar and could be fitted with a Hill function. The half-saturating concentrations and Hill coefficients determined were almost identical. As RH421 responds to binding of a Na+ ion to the third neutral site whereas FITC monitors conformational changes in the ATP-binding site or its environment, this result implies that electrogenic binding of the third Na+ ion is the trigger for a structural rearrangement of the ATP-binding moiety. This enables enzyme phosphorylation, which is accompanied by a fast occlusion of the Na+ ions and followed by the conformational transition E1/E2 of the protein. The coordinated action both at the ion and the nucleotide binding sites allows for the first time a detailed formulation of the mechanism of enzyme phosphorylation that occurs only when three Na+ ions are bound. Received: 8 October 1998/Revised: 29 December 1998  相似文献   

15.
The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters and controls dopamine (DA) homeostasis by mediating Na+- and Cl-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagenesis to investigate the mechanistic relationship between DAT ion binding sites and transporter conductances. In Li+, DAT displayed a cocaine-sensitive cation leak current ∼10-fold larger than the substrate-induced current in Na+. Mutation of Na+ coordinating residues in the first (Na1) and second (Na2) binding sites suggested that the Li+ leak depends on Li+ interaction with Na2 rather than Na1. DA caused a marked inhibition of the Li+ leak, consistent with the ability of the substrate to interact with the Li+-occupied state of the transporter. The leak current in Li+ was also potently inhibited by low millimolar concentrations of Na+, which according to our mutational data conceivably depended on high affinity binding to Na1. The Li+ leak was further regulated by Cl that most likely increases Li+ permeation by allosterically lowering Na2 affinity. Interestingly, mutational lowering of Na2 affinity by substituting Asp-420 with asparagine dramatically increased cation permeability in Na+ to a level higher than seen in Li+. In addition to reveal a functional link between the bound Cl and the cation bound in the Na2 site, the data support a key role of Na2 in determining cation permeability of the transporter and thereby possibly in regulating the opening probability of the inner gate.  相似文献   

16.
The system IMINO transporter plays an essential role in the transport of proline and hydroxyproline in the intestine and kidney. Its molecular correlate has been identified and named SIT1 or IMINO (SLC6A20). Initial characterization of the transporter showed it to be Na+ and Cl?-dependent, but the stoichiometry remained unresolved. Using homology modeling along the structure of the bacterial leucine transporter LeuT, we identified two highly conserved Na+-binding sites and a putative Cl?-binding site. Mutation of all residues in the two proposed Na+-binding sites revealed that most of them were essential for uptake and completely inactivated the transporter. However, mutants A22V (Na+-binding site 1) and mutants S20A, S20G, S20G/G405S (Na+-binding site 2) were partially active and characterized further. Flux studies suggested that mutations of Na+-binding site 1 caused a decrease of the Na+-K0.5, whereas mutations of site 2 increased the K0.5. Mutation of Na+-binding site 1 also changed the ion selectivity of the IMINO transporter. IMINO actively translocates 36Cl? demonstrating that the proposed chloride binding site is used in the transporter. Accumulation experiments and flux measurements at different holding potentials showed that the transporter can work as a 2Na+/1Cl?-proline cotransporter. The proposed homology model allows to study mutations in IMINO associated with iminoglycinuria.  相似文献   

17.
Ion-coupled transport of neurotransmitter molecules by neurotransmitter:sodium symporters (NSS) play an important role in the regulation of neuronal signaling. One of the major events in the transport cycle is ion-substrate coupling and formation of the high-affinity occluded state with bound ions and substrate. Molecular mechanisms of ion-substrate coupling and the corresponding ion-substrate stoichiometry in NSS transporters has yet to be understood. The recent determination of a high-resolution structure for a bacterial homolog of Na+/Cl-dependent neurotransmitter transporters, LeuT, offers a unique opportunity to analyze the functional roles of the multi-ion binding sites within the binding pocket. The binding pocket of LeuT contains two metal binding sites. The first ion in site NA1 is directly coupled to the bound substrate (Leu) with the second ion in the neighboring site (NA2) only ∼7 Å away. Extensive, fully atomistic, molecular dynamics, and free energy simulations of LeuT in an explicit lipid bilayer are performed to evaluate substrate-binding affinity as a function of the ion load (single versus double occupancy) and occupancy by specific monovalent cations. It was shown that double ion occupancy of the binding pocket is required to ensure substrate coupling to Na+ and not to Li+ or K+ cations. Furthermore, it was found that presence of the ion in site NA2 is required for structural stability of the binding pocket as well as amplified selectivity for Na+ in the case of double ion occupancy.  相似文献   

18.
Jing Li 《Biophysical journal》2009,97(11):L29-L31
The crystal structure of Na+-coupled galactose symporter (vSGLT) reports the transporter in its substrate-bound state, with a Na+ ion modeled in a binding site corresponding to that of a homologous protein, leucine transporter (LeuT). In repeated molecular dynamics simulations, however, we find the Na+ ion instable, invariably and spontaneously diffusing out of the transporter through a pathway lined by D189, which appears to facilitate the diffusion of the ion toward the cytoplasm. Further analysis of the trajectories and close structural examination, in particular, comparison of the Na+-binding sites of vSGLT and LeuT, strongly indicates that the crystal structure of vSGLT actually represents an ion-releasing state of the transporter. The observed dynamics of the Na+ ion, in contrast to the substrate, also suggests that the cytoplasmic release of the Na+ ion precedes that of the substrate, thus shedding light on a key step in the transport cycle of this secondary transporter.  相似文献   

19.
Neurotransmitter:sodium symporter (NSS) proteins are secondary Na+-driven active transporters that terminate neurotransmission by substrate uptake. Despite the availability of high-resolution crystal structures of a bacterial homolog of NSSs—Leucine Transporter (LeuT)—and extensive computational and experimental structure-function studies, unanswered questions remain regarding the transport mechanisms. We used microsecond atomistic molecular-dynamics (MD) simulations and free-energy computations to reveal ion-controlled conformational dynamics of LeuT in relation to binding affinity and selectivity of the more extracellularly positioned Na+ binding site (Na1 site). In the course of MD simulations starting from the occluded state with bound Na+, but in the absence of substrate, we find a spontaneous transition of the extracellular vestibule of LeuT into an outward-open conformation. The outward opening is enhanced by the absence of Na1 and modulated by the protonation state of the Na1-associated Glu-290. Consistently, the Na+ affinity for the Na1 site is inversely correlated with the extent of outward-open character and is lower than in the occluded state with bound substrate; however, the Na1 site retains its selectivity for Na+ over K+ in such conformational transitions. To the best of our knowledge, our findings shed new light on the Na+-driven transport cycle and on the symmetry in structural rearrangements for outward- and inward-open transitions.  相似文献   

20.
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl?) channels. The EAATs couple the transport of glutamate to the co-transport of three Na+ ions and one H+ ion into the cell, and the counter-transport of one K+ ion out of the cell. The EAAT Cl? channel is activated by the binding of glutamate and Na+, but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl? permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl? permeation and the mechanisms that underlie their split personality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号