首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF), which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.  相似文献   

2.
Although it may seem obvious that mechanical forces are required to drive metastatic cell movements, understanding of the mechanical aspects of metastasis has lagged far behind genetic and biochemical knowledge. The goal of this study is to learn about the mechanics of metastasis using a cell-based finite element model that proved useful for advancing knowledge about the forces that drive embryonic cell and tissue movements. Metastasis, the predominant cause of cancer-related deaths, involves a series of mechanical events in which one or more cells dissociate from a primary tumour, migrate through normal tissue, traverse in and out of a multi-layer circulatory system vessel and resettle. The present work focuses on the dissemination steps, from dissociation to circulation. The model shows that certain surface tension relationships must be satisfied for cancerous cells to dissociate from a primary tumour and that these equations are analogous to those that govern dissociation of embryonic cells. For a dissociated cell to then migrate by invadopodium extension and contraction and exhibit the shapes seen in experiments, the invadopodium must generate a contraction equal to approximately twice that produced by the interfacial tension associated with surrounding cells. Intravasation through the wall of a vessel is governed by relationships akin to those in the previous two steps, while release from the vessel wall is governed by equations that involve surface and interfacial tensions. The model raises a number of potential research questions. It also identifies how specific mechanical properties and the sub-cellular structural components that give rise to them might be changed so as to thwart particular metastatic steps and thereby block the spread of cancer.  相似文献   

3.
The etiology of congenital heart disease is multifactorial, with genetics and nutritional deficiencies recognized as causative agents. Maternal zinc (Zn) deficiency is associated with an increased risk for fetal heart malformations; however, the contributing mechanisms have yet to be identified. In this study, we fed pregnant rats a Zn-adequate diet (ZnA), a Zn-deficient (ZnD), or a restricted amount of Zn adequate diet (RF) beginning on gestation day (GD) 4.5, to examine whether increased cell death and changes in cardiac neural crest cells (NCC) play a role in Zn deficiency-induced heart defects. Fetuses were collected on GD 13.5, 15.5, and 18.5 and processed for GATA-4, FOG-2, connexin-43 (Cx43), HNK-1, smooth muscle α-actin (SMA) and cleaved caspase-3 protein expression. Fetuses from ZnA-fed dams showed normal heart development, whereas fetuses from dams fed with the ZnD diet exhibited a variety of heart anomalies, particularly in the region of the outflow tract. HNK-1 expression was lower than normal in the hearts of GD13.5 and 15.5 ZnD fetuses, particularly in the right atrium and in the distal tip of the interventricular septum. Conversely, Cx43 immunoreactivity was increased throughout the heart in fetuses from ZnD dams compared to fetuses from control dams. The distribution and intensity of expression of SMA, GATA-4, FOG-2, and markers of apoptosis were similar among the three groups. We propose that Zn deficiency induced alterations in the distribution of Cx43 and HNK-1 in fetal hearts contribute to the occurrence of the developmental heart anomalies.  相似文献   

4.
Biology has a big elephant in the room. Researchers are learning that microorganisms are critical for every aspect of the biosphere''s health. Even at the scale of our own bodies, we are discovering the unexpected necessity and daunting complexity of our microbial partners. How can we gain an understanding of the form and function of these “ecosystems” that are an individual animal? This essay explores how development of experimental model systems reveals basic principles that underpin the essence of symbiosis and, more specifically, how one symbiosis, the squid-vibrio association, provides insight into the persistent microbial colonization of animal epithelial surfaces.  相似文献   

5.

Purpose

Using three-dimensional (3D) stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT) data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings.

Methods

A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1). Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method.

Results

The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers) than the female hand.

Conclusions

This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored.  相似文献   

6.

Background

Electromechanical delay is the time lag between onsets of muscle activation and muscle force production and reflects both electro-chemical processes and mechanical processes. The aims of the present study were two-fold: to experimentally determine the slack length of each head of the biceps brachii using elastography and to determine the influence of the length of biceps brachii on electromechanical delay and its electro-chemical/mechanical processes using very high frame rate ultrasound.

Methods/Results

First, 12 participants performed two passive stretches to evaluate the change in passive tension for each head of the biceps brachii. Then, they underwent two electrically evoked contractions from 120 to 20° of elbow flexion (0°: full extension), with the echographic probe maintained over the muscle belly and the myotendinous junction of biceps brachii. The slack length was found to occur at 95.5 ± 6.3° and 95.3 ± 8.2° of the elbow joint angle for the long and short heads of the biceps brachii, respectively. The electromechanical delay was significantly longer at 120° (16.9 ± 3.1 ms; p<0.001), 110° (15.0 ± 3.1 ms; p<0.001) and 100° (12.7 ± 2.5 ms; p = 0.01) of elbow joint angle compared to 90° (11.1 ± 1.7 ms). However, the delay between the onset of electrical stimulation and the onset of both muscle fascicles (3.9 ± 0.2 ms) and myotendinous junction (3.7 ± 0.3 ms) motion was not significantly affected by the joint angle (p>0.95).

Conclusion

In contrast to previous observations on gastrocnemius medialis, the onset of muscle motion and the onset of myotendinous junction motion occurred simultaneously regardless of the length of the biceps brachii. That suggests that the between-muscles differences reported in the literature cannot be explained by different muscle passive tension but instead may be attributable to muscle architectural differences.  相似文献   

7.
One of the early surprises in the study of cell adhesion was the discovery that β-catenin plays dual roles, serving as an essential component of cadherin-based cell–cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.Modern biomedical science is a partnership between scientists studying basic cell and developmental processes in model systems and clinicians exploring the basis of human disease. Few fields exemplify this better than Wnt signaling, born 22 years ago with the realization that the oncogene int1 and the Drosophila developmental patterning gene wingless (wg) are homologs (Cabrera et al. 1987; Rijsewijk et al. 1987). Additional connections further fueled research. Drosophila Armadillo (Arm), a component of the Wg pathway, is the homolog of the cell junction proteins β-catenin (βcat) and plakoglobin (McCrea et al. 1991; Peifer et al. 1992; Peifer and Wieschaus 1990) joining Wnt signaling and cadherin-based cell adhesion, a connection we still do not fully understand (see Heuberger and Birchmeier 2009). Adenomatous polyposis coli (APC), the tumor suppressor mutated in most colon cancers, binds βcat and is a key regulator of Wnt signaling (Rubinfeld et al. 1993; Su et al. 1993), putting the Wnt field even more squarely in the center of cancer research. Here, we outline recent advances in understanding Wnt signaling, casting new light on these critical regulators of development, homeostasis, and disease.  相似文献   

8.
During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer''s (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer''s (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer''s (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer.  相似文献   

9.
Introductions of exotic species pose a significant threat to the persistence of many native populations, including many inland fishes. In 1994, piscivorous lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake, Yellowstone National Park, Wyoming, USA, one of the last strongholds of the native Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). Predation by lake trout is expected to lead to a substantial decline in the native cutthroat trout population, which may have significant negative consequences for terrestrial predators that depend on cutthroat trout for prey and for the recreational fishery of the Park. We developed a matrix demographic model for the cutthroat trout population in Yellowstone Lake to identify the life stages that are most critical for understanding population dynamics. Parameter estimates (vital rates) were manipulated to explore the possible consequences of lake trout invasion. Comparisons of our results with current estimates of population trend and age structure suggested that our model reflected current conditions of the system. Elasticity analysis of the model revealed that population growth was most sensitive to annual survival of young trout, the group that is expected to be most vulnerable to lake trout predation. Projection of our deterministic model suggested that, in addition to a decline in abundance of cutthroat trout, the effects of lake trout may be manifest as changes in age and breeding structure of the population. Simulations of a stochastic version of the model indicated that a 60% or greater decline in the cutthroat trout population could be expected within 100 years if the lake trout population were permitted to grow uncontrolled. However, an effective control strategy that prevented the establishment of a large population of lake trout substantially reduced population decline, although the reduction in the availability of adult trout to terrestrial predators and anglers may be still be substantial (20–40%). In addition to current control activities in place in the Park, we recommend a renewed emphasis on understanding and monitoring juvenile life stages of cutthroat trout. Our results demonstrate the value of existing data sets for developing models to estimate the potential impact of biological invasions on the management and conservation of native populations, especially when opportunities and resources for additional empirical studies are limited.  相似文献   

10.
The cellular form of the prion protein (PrPC) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrPC distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrPC expression profiles in different mammals we carried out a detailed expression analysis of PrPC distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrPC in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrPC in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species.  相似文献   

11.
Cells modulate themselves in response to the surrounding environment like substrate elasticity, exhibiting structural reorganization driven by the contractility of cytoskeleton. The cytoskeleton is the scaffolding structure of eukaryotic cells, playing a central role in many mechanical and biological functions. It is composed of a network of actins, actin cross-linking proteins (ACPs), and molecular motors. The motors generate contractile forces by sliding couples of actin filaments in a polar fashion, and the contractile response of the cytoskeleton network is known to be modulated also by external stimuli, such as substrate stiffness. This implies an important role of actomyosin contractility in the cell mechano-sensing. However, how cells sense matrix stiffness via the contractility remains an open question. Here, we present a 3-D Brownian dynamics computational model of a cross-linked actin network including the dynamics of molecular motors and ACPs. The mechano-sensing properties of this active network are investigated by evaluating contraction and stress in response to different substrate stiffness. Results demonstrate two mechanisms that act to limit internal stress: (i) In stiff substrates, motors walk until they exert their maximum force, leading to a plateau stress that is independent of substrate stiffness, whereas (ii) in soft substrates, motors walk until they become blocked by other motors or ACPs, leading to submaximal stress levels. Therefore, this study provides new insights into the role of molecular motors in the contraction and rigidity sensing of cells.  相似文献   

12.
Our aim was to evaluate whether atrial electromechanical delay measured by tissue Doppler imaging (TDI), which is an early predictor of atrial fibrillation (AF) development, is prolonged in obese subjects. A total of 40 obese and 40 normal‐weight subjects with normal coronary angiograms were included in this study. P‐wave dispersion (PWD) was calculated on the 12‐lead electrocardiogram (ECG). Systolic and diastolic left ventricular (LV) functions, inter‐ and intra‐atrial electromechanical delay were measured by TDI and conventional echocardiography. Inter‐ and intra‐atrial electromechanical delay were significantly longer in the obese subjects compared with the controls (44.08 ± 10.06 vs. 19.35 ± 5.94 ms and 23.63 ± 6.41 vs. 5.13 ± 2.67 ms, P < 0.0001 for both, respectively). PWD was higher in obese subjects (53.40 ± 5.49 vs. 35.95 ± 5.93 ms, P < 0.0001). Left atrial (LA) diameter, LA volume index and LV diastolic parameters were significantly different between the groups. Interatrial electromechanical delay was correlated with PWD (r = 0.409, P = 0.009), high‐sensitivity C‐reactive protein (hsCRP) levels (r = 0.588, P < 0.0001). Interatrial electromechanical delay was positively correlated with LA diameter, LA volume index, and LV diastolic function parameters consisting of mitral early wave (E) deceleration time (DT) and isovolumetric relaxation time (IVRT; r = 0.323, P = 0.042; r = 0.387, P = 0.014; r = 0.339, P = 0.033; r = 0.325, P = 0.041; respectively) and, negatively correlated with mitral early (E) to late (A) wave ratio (E/A) (r = ?0.380, P = 0.016) and myocardial early‐to‐late diastolic wave ratio (Em/Am) (r = ?0.326, P = 0.040). This study showed that atrial electromechanical delay is prolonged in obese subjects. Prolonged atrial electromechanical delay is due to provoked low‐grade inflammation as well as LA enlargement and early LV diastolic dysfunction in obese subjects.  相似文献   

13.
14.
一类带时滞竞争模型的周期解   总被引:2,自引:0,他引:2  
研究了来源于水生种群植化相克的模型,提出了带时滞的半线性抛物系统.用上下解方法讨论了抛物方程组周期解存在性的原理,利用特征函数构造所提出抛物系统的上解,给出了正周期解存在的充分条件.  相似文献   

15.
Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory system.  相似文献   

16.
Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor (VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are structurally and functionally different. Here, we develop and validate a computational model of the binding of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these VEGF isoforms. In capturing essential features of VEGFR2 signaling and trafficking, our model suggests that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines. Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214. This is the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 without an intrinsic difference in receptor activation. The model predicts that Neuropilin-1 can induce differences in the surface-to-internal distribution of VEGFR2. Simulations also show that ligated VEGFR2 and phosphorylated VEGFR2 levels diverge over time following stimulation. Using this model, we identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our single consistent model framework.  相似文献   

17.
In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell''s cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules.  相似文献   

18.
Quercetin (3,5,7,3',4'-pentahydroxyflavone) is one of the most abundant natural flavonoids. It is present in various common vegetables and fruits. In this report, we examined the effect of quercetin on melanogenesis using a three-dimensional reconstituted human epidermal culture model, MelanoDerm, which is a new commercially-available cultured human epidermis containing functional melanocytes. Treatment with 10 microM quercetin induced an increase of tyrosinase activity in cultured epidermis after 3-5 days in time-dependent manner. In the quercetin-treated epidermis, furthermore, melanin content and tyrosinase expression were markedly increased, as shown by immunohistochemistry after a 7-day culture period. Ultrastructural studies clearly indicated an accumulation of mature melanosomes (stages III and IV) inside the basal layer of the cultured epidermis after the quercetin treatment. In addition, the dendrites of melanocytes extended further towards the adjacent keratinocytes after quercetin treatment. These results suggest that quercetin has an effect on maturation of melanosomes and that quercetin has the potential to induced melanogenesis in human epidermis.  相似文献   

19.
The infant immune response to respiratory syncytial virus (RSV) remains incompletely understood. Here we review the use of a neonatal mouse model of RSV infection to mimic severe infection in human infants. We describe numerous age-specific responses, organized by cell type, observed in RSV-infected neonatal mice and draw comparisons (when possible) to human infants.  相似文献   

20.
In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号