共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasyl Kilin Oleksandr Glushonkov Lucas Herdly Andrey Klymchenko Ludovic Richert Yves Mely 《Biophysical journal》2015,108(10):2521-2531
To monitor the lateral segregation of lipids into liquid-ordered (Lo) and -disordered (Ld) phases in lipid membranes, environment-sensitive dyes that partition in both phases but stain them differently have been developed. Of particular interest is the dual-color F2N12S probe, which can discriminate the two phases through the ratio of its two emission bands. These bands are associated with the normal (N∗) and tautomer (T∗) excited-state species that result from an excited-state intramolecular proton transfer. In this work, we investigated the potency of the time-resolved fluorescence parameters of F2N12S to discriminate lipid phases in model and cell membranes. Both the long and mean lifetime values of the T∗ form of F2N12S were found to differ by twofold between Ld and Lo phases as a result of the restriction in the relative motions of the two aromatic moieties of F2N12S imposed by the highly packed Lo phase. This differed from the changes in the ratio of the two emission bands between the two phases, which mainly resulted from the decreased hydration of the N∗ form in the Lo phase. Importantly, the strong difference in lifetimes between the two phases was preserved when cholesterol was added to the Ld phase. The two phases could be imaged with high contrast by fluorescence lifetime imaging microscopy (FLIM) on giant unilamellar vesicles. FLIM images of F2N12S-labeled live HeLa cells confirmed that the plasma membrane was mainly in the Lo-like phase. Furthermore, the two phases were found to be homogeneously distributed all over the plasma membrane, indicating that they are highly mixed at the spatiotemporal resolution of the FLIM setup. Finally, FLIM could also be used to sensitively monitor the change in lipid phase upon cholesterol depletion and apoptosis. 相似文献
2.
In the vertebrate retina, phototransduction, the conversion of light to an electrical signal, is carried out by the rod and cone photoreceptor cells1-4. Rod photoreceptors are responsible for vision in dim light, cones in bright light. Phototransduction takes place in the outer segment of the photoreceptor cell, a specialized compartment that contains a high concentration of visual pigment, the primary light detector. The visual pigment is composed of a chromophore, 11-cis retinal, attached to a protein, opsin. A photon absorbed by the visual pigment isomerizes the chromophore from 11-cis to all-trans. This photoisomerization brings about a conformational change in the visual pigment that
initiates a cascade of reactions culminating in a change in membrane potential, and bringing about the transduction of the light stimulus to an electrical signal. The
recovery of the cell from light stimulation involves the deactivation of the intermediates activated by light, and the reestablishment of the membrane potential. Ca2+ modulates the activity of several of the enzymes involved in phototransduction, and its concentration is reduced upon light stimulation. In this way, Ca2+ plays an important role in the recovery of the cell from light stimulation and its adaptation to background light.Another essential part of the recovery process is the regeneration of the visual pigment that has been destroyed during light-detection by the
photoisomerization of its 11-cis chromophore to all-trans5-7. This regeneration begins with the release of all-trans retinal by
the photoactivated pigment, leaving behind the apo-protein opsin. The released all-trans retinal is rapidly reduced in a reaction utilizing NADPH to all-
trans retinol, and opsin combines with fresh 11-cis retinal brought into the outer segment to reform the visual pigment. All-trans retinol is
then transferred out of the outer segment and into neighboring cells by the specialized carrier Interphotoreceptor Retinoid Binding Protein (IRBP).Fluorescence imaging of single photoreceptor cells can be used to study their physiology and cell biology. Ca2+-sensitive fluorescent dyes can be used to examine in detail the interplay between outer
segment Ca2+ changes and response to light8-12 as well as the role of inner segment Ca2+ stores in Ca2+ homeostasis13,14.
Fluorescent dyes can also be used for measuring Mg2+ concentration15, pH, and as tracers of aqueous and membrane compartments16.
Finally, the intrinsic fluorescence of all-trans retinol (vitamin A) can be used to monitor the kinetics of its formation and removal in single
photoreceptor cells17-19.Download video file.(70M, mov) 相似文献
3.
Single-Molecule Microscopy Reveals Membrane Microdomain Organization of Cells in a Living Vertebrate
Marcel J.M. Schaaf Wiepke J.A. Koopmans John van Noort Thomas S. Schmidt 《Biophysical journal》2009,97(4):1206-1214
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms. 相似文献
4.
D-Amino Acids in Living Higher Organisms 总被引:2,自引:0,他引:2
The homochirality of biological amino acids (L-amino acids) andof the RNA/DNA backbone (D-ribose) might have become establishedbefore the origin of life. It has been considered that D-aminoacids and L-sugars were eliminated on the primitive Earth.Therefore, the presence and function of D-amino acids in livingorganisms have not been studied except for D-amino acids in thecell walls of microorganisms. However, D-amino acids wererecently found in various living higher organisms in the form offree amino acids, peptides, and proteins. Free D-aspartate andD-serine are present and may have important physiologicalfunctions in mammals. D-amino acids in peptides are well knownas opioid peptides and neuropeptides. In protein, D-aspartateresidues increase during aging. This review deals with recentadvances in the study of D-amino acids in higher organisms. 相似文献
5.
Quantitative Imaging of Molecular Order in Lipid Membranes Using Two-Photon Fluorescence Polarimetry
We present a polarimetric two-photon microscopy technique to quantitatively image the local static molecular orientational behavior in lipid and cell membranes. This approach, based on a tunable excitation polarization state complemented by a polarized readout, is easily implementable and does not require hypotheses on the molecular angular distribution such as its mean orientation, which is a main limitation in traditional fluorescence anisotropy measurements. The method is applied to the investigation of the molecular angular distribution in giant unilamellar vesicles formed by liquid-ordered and liquid-disordered micro-domains, and in COS-7 cell membranes. The highest order contrast between ordered and disordered domains is obtained for dyes locating within the membrane acyl chains. 相似文献
6.
7.
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ∼50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. 相似文献
8.
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ∼50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells.As the epicenter for many cellular functions, understanding the dynamics of the plasma membrane is important to monitoring biological phenomena. External forces acting upon the plasma membrane (e.g., electric, mechanical) have been shown to cause rapid disturbances, often resulting in dramatic changes in cell physiology (1–3). To understand this interaction, a minimally invasive, highly sensitive imaging technique that enables monitoring the structure of the plasma membrane is needed. Lipophilic dyes, which embed themselves into lipid membranes, are sensitive to the surrounding electric field and, therefore, report changes in membrane fluidity as well as voltage due to the capacitive nature of the membranes (4,5). This sensitivity is typically detected as a shift in the fluorescence emission spectrum. Localization of the fluorescence signal to only the plasma membrane is difficult because the probes also label internal membrane structures. Thus, to overcome this lack of spatial selectivity, second harmonic generation (SHG) has been used as an alternative to fluorescence for membrane imaging (6,7).In SHG, a second-order nonlinear polarization is induced by electronic disruption of a probe molecule from the electromagnetic field of the incident laser beam. This polarization generates oscillating dipole moments that reradiate light at twice the energy of the excitation beam. The induction of this dipole is sensitive to the static electric field surrounding the probe and the steady-state molecular polarization of the probe molecule. These properties make SHG probes useful for monitoring changes in biological membranes.First, as the voltage potential across the membrane changes, the static electric field around the probe also shifts, making the probe sensitive to these variations (7). Several SHG probes have, therefore, been employed to monitor plasma membrane potential (7,8).Second, because the dipole is affected by the steady-state molecular polarization of the probe itself, a SHG signal is only produced in materials that lack a center of inversion symmetry. In the centrosymmetric case, any emitted radiation is cancelled out by destructive interference. The properties of an interfacial environment, such as a cellular plasma membrane, not only provide the necessary asymmetry, but cause the polarized lipophilic dyes to be aligned in respect to the interface, instead of being randomly distributed as they would in a bulk environment. This alignment allows the generation of a coherent SHG signal from the plasma membrane while the rest of the cell remains nearly signal-free (6,7).We investigated whether the alignment sensitivity of the SHG response could be used to detect minute changes in the organization of the plasma membrane. Jurkat clone E6-1 human T-lymphocytes with a spherical morphology were selected for optimum signal clarity and cultured as directed by American Type Culture Collection (ATCC, Manassas, VA) with 1 I.U./mL penicillin and 0.1 μg/mL streptomycin. Cells were added to 35-mm poly-L-lysine-coated glass-bottomed dishes (MatTek, Ashland, MA) and incubated for 1 h in growth media to allow adherence. Before loading, the cells were rinsed with a buffer consisting of 135 mM NaCl, 5 mM KCl, 2 mM MgCl2, 10 mM HEPES, 10 mM glucose, 2 mM CaCl2, pH 7.4, 290–310 mOsm. SHG probes, Di-4-ANEPPDHQ (Di-4) (5 μM final concentration), FM4-64 (15 μM) or ATR (100 μM, 1 mg/mL BSA) were added to the buffer solution and incubated for 1 h. Cellular imaging was performed in the labeling buffer to limit diffusion of the probe molecules out of the cell membranes.A Ti:sapphire oscillator at 980 nm (Coherent Chameleon, 130 fs, 80 MHz, ∼15 mW at the sample; Coherent Laser, Santa Clara, CA) was coupled through the scan head of a modified model No. TCS SP5 II (Leica Geosystems, Norcross, GA) for SHG and multiphoton-excited fluorescence imaging (40×, water, 1.1 NA) using resonant scanning. SHG signal was collected in transmission by a photomultiplier tube after 680-nm shortpass and 485/25-nm bandpass filters; simultaneous fluorescence signal was collected in the epi-direction by two non-descanned photomultiplier tubes with 540/60-nm and 650/60-nm bandpass filters.Three SHG probes previously used to monitor voltage or membrane order in living cells were tested (8–10). Although ATR is reported to be effective in monitoring membrane voltage, we obtained nearly no SHG signal, despite successful loading as indicated by the fluorescence signal (Fig. 1). When FM4-64 and Di-4 were loaded to similar fluorescence intensities, nearly equivalent SHG signal was collected. Di-4 did appear to have a greater internalization of the dye. However, after the first frame, the FM4-64 signal dropped considerably (Fig. 1
b), an observation reported as a membrane voltage-independent bleaching effect (8). This drop in signal recovered after excitation was blocked for several seconds, but quantification of the response was difficult. Di-4 did not suffer as dramatic a drop in signal upon excitation, and still had sufficient SHG signal/noise after several seconds, so it was used in all further experiments.Open in a separate windowFigure 1(a) Fluorescence (top) and SHG (bottom) images for the three probes. (b) Signal/noise for the fluorescence and SHG for the initial frame and shortly after beginning acquisition. Error bars represent the mean ± SE (n = 10). Scale bar is 10 μm.To test whether Di-4 would report a rapid change in membrane organization, we applied a single nanosecond-duration pulsed electric field (nsPEF) to the labeled cell. These ultrabrief, high-intensity (MV/m) pulses differ from longer (μs-ms), lower-intensity (kV/m) pulses traditionally associated with electroporation in induced cellular response (3,11,12). Through selective uptake of small ions (Ca2+, Ti+) with limited uptake of propidium iodide, nsPEF have been previously postulated to cause nanopores (<2 nm diameter) in the plasma membrane. In contrast with a previous study observing poration resulting from traditional electroporation (13), the brevity of this apparently novel cellular insult allows for the decoupling of the mechanical effects of the pulse on the membrane from the electrical effects of the pulse itself. A single pulse, generated by a custom pulse generator, was delivered to the cells using a pair of 125-μm diameter tungsten electrodes, separated edge-to-edge by 150 μm, as previously described in Ibey et al. (14). For maximum visualization of changes in the SHG signal, a half-wave plate was placed before the scan head to align the polarization of the laser such that the brightest signals from the plasma membrane were at the poles facing the electrodes.The Di-4 SHG signal in response to a single 16.7 kV/cm, 600-ns nsPEF is shown in Fig. 2. Before the pulse, the intensity of the SHG signal is high at each of these poles. Immediately after the pulse, the SHG intensity drops by ∼50% on the side of the cell facing the anodic electrode, whereas little intensity is lost at the other pole. This response is plotted in Fig. 2 (pulse applied at 2 s), where it is apparent that the response is near instantaneous with little recovery in signal in the 5 s postexposure. The SHG response matches the previously observed effect of this stimulus, where ion uptake displayed a polar dependence and persisted for a number of minutes (11,12). Images taken 5 min after an nsPEF exposure are also shown in Fig. 2. These images confirm the eventual recovery of the cell and the corresponding return of SHG signal to preexposure levels.Open in a separate windowFigure 2(a) SHG images showing drop in signal on the anodic (or A-pole) of the cell. (b) Time trace of SHG response with the electrical pulse applied at 2 s that shows a near-instantaneous drop in the SHG signal at the anodic pole of the cell. (c) SHG image preexposure, immediately postexposure, and then 5-min postexposure showing recovery of the SHG signal.To decouple membrane disturbance from environmental changes around the membrane, we compared the SHG response to the simultaneously acquired fluorescence signal. Because fluorescence is not subject to the strict orientation requirement of SHG, the plasma membrane fluorescence signal provides an indication of the membrane fluidity and/or potential. Despite the dramatic shift in SHG intensity on the anodic pole upon the electrical pulse exposure (Fig. 3 a), the fluorescence channels display little response from the equivalent membrane sections with the exception of photobleaching and a slight increase in signal in both emission bands on the anodic side (Fig. 3, b and c). The shading in these graphs represents the mean ± SE for six cells. Although this slight increase may indicate that a small amount of dye is simply diffusing in or out of the membrane upon exposure, the fluorescence response is not as rapid or as lasting as the SHG response. Change in membrane fluidity or voltage can also be quantized using these fluorescence signals and a value known as the generalized polarization (GP) (4),(1)As with the raw intensity of the individual signals, the GP value for the membrane (Fig. 3
d) shows no significant shift, indicating that the membrane is likely not transitioning between a more raft- and fluidlike state. Thus, it seems likely that the dye was initially aligned in the tightly-packed ordered membrane so that the probes were able to generate a SHG photon. As shown in Fig. 3
e, we postulate that upon electrical pulse exposure, the membrane was disrupted by the formation with nanopores giving the probe molecules the flexibility to disorient within the membrane. The resulting alignment of the probes is more isotropic in nature, thereby limiting the probes probability of producing a SHG photon. The fluorescence signal remained, however, indicating that the probes remained active in the membrane.Open in a separate windowFigure 3(a) Average SHG signal showing the dramatic drop in signal on the anodic pole at the pulse application (2 s). (b and c) Simultaneous TPF signals showing nearly no instantaneous change at the pulse application. (d) GP showing no observable changes in the membrane potential or fluidity after the pulse. (Shaded areas) Fit to the mean ± SE for each trace (n = 6). (e) Conceptualization of the hypothesized membrane disruption underlying the observed change in SHG response.Thus, by taking advantage of the selection criteria of SHG, we were able to successfully use the SHG probe, Di-4, to monitor rapid disruption of the plasma membrane. Because SHG can only be generated when the probes are aligned in the plasma membrane, the SHG signal diminishes significantly upon disruption. The simultaneous collection of the multiphoton-excited fluorescence signal was advantageous in that it demonstrated that the probes did not simply diffuse out of the membrane, did not appear to be energetically disrupted by the electric pulse, and showed that the membrane changes were not simply a change in lipid order. We believe that this technique holds tremendous potential for use in the study of how external stimuli interact with and change the orientation of biological membranes. Such knowledge may allow for further understanding of how manipulation of cells and biological systems can be achieved using external stimuli. 相似文献
9.
Joanna M. Kwiatek Dylan M. Owen Ahmed Abu-Siniyeh Ping Yan Leslie M. Loew Katharina Gaus 《PloS one》2013,8(2)
Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluorescence emission spectra are red-shifted between the liquid-ordered and liquid-disordered phases. Using ratiometric imaging we demonstrate that the degree of membrane order can be quantitatively determined in artificial liposomes as well as live cells and intact, live zebrafish embryos. Finally, we show that the fluorescence lifetime of the dyes is also dependent on bilayer order. These probes expand the current palate of lipid order-sensing fluorophores affording greater flexibility in the excitation/emission wavelengths and possibly new opportunities in membrane biology. 相似文献
10.
Cholesterol-rich, liquid-ordered (Lo) domains are believed to be biologically relevant, and yet detailed knowledge about them, especially in live cells under physiological conditions, is elusive. Although these domains have been observed in model membranes, understanding cholesterol-lipid interactions at the molecular level, under controlled lipid mixing, remains a challenge. Further, although there are a number of fluorescent lipid analogs that partition into liquid-disordered (Ld) domains, the number of such analogs with a high affinity for biologically relevant Lo domains is limited. Here, we use a new Bodipy-labeled cholesterol (Bdp-Chol) derivative to investigate membrane fluidity, lipid order, and partitioning in various lipid phases in giant unilamellar vesicles (GUVs) as a model system. GUVs were prepared from mixtures of various molar fractions of dioleoylphosphatidylcholine, cholesterol, and egg sphingomyelin. The Ld phase domains were also labeled with 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine (DiI-C12) for comparison. Two-photon fluorescence lifetime and anisotropy imaging of Bdp-Chol are sensitive to lipid phase domains in GUVs. The fluorescence lifetime of Bdp-Chol in liquid-disordered, single-phase GUVs is 5.50 ± 0.08 ns, compared with 4.1 ± 0.4 ns in the presence of DiI-C12. The observed reduction of fluorescence lifetime is attributed to Förster resonance energy transfer between Bdp-Chol (a donor) and DiI-C12 (an acceptor) with an estimated efficiency of 0.25 and donor-acceptor distance of 2.6 ± 0.2 nm. These results also indicate preferential partitioning (Kp = 1.88) of Bdp-Chol into the Lo phase. One-photon, time-resolved fluorescence anisotropy of Bdp-Chol decays as a triexponential in the lipid bilayer with an average rotational diffusion coefficient, lipid order parameter, and membrane fluidity that are sensitive to phase domains. The translational diffusion coefficient of Bdp-Chol, as measured using fluorescence correlation spectroscopy, is (7.4 ± 0.3) × 10−8 cm2/s and (5.0 ± 0.2) × 10−8 cm2/s in the Ld and Lo phases, respectively. Experimental translational/rotational diffusion coefficient ratios are compared with theoretical predictions using the hydrodynamic model (Saffman-Delbrück). The results suggest that Bdp-Chol is likely to form a complex with other lipid molecules during its macroscopic diffusion in GUV lipid bilayers at room temperature. Our integrated, multiscale results demonstrate the potential of this cholesterol analog for studying lipid-lipid interactions, lipid order, and membrane fluidity of biologically relevant Lo domains. 相似文献
11.
12.
Sequences in current databases show that a number of proteins involved in respiratory processes are homologous in archaeal
and bacterial species. In particular, terminal oxidases belonging to oxygen, nitrate, sulfate, and sulfur respiratory pathways
have been sequenced in members of both domains. They include cytochrome oxidase, nitrate reductase, adenylylsulfate reductase,
sulfite reductase, and polysulfide reductase. These proteins can be assigned to the last common ancestor of living organisms
assuming that the deepest split of the three domains of life occurred between Archaea and Bacteria and that they were not
acquired through lateral gene transfer by one of these domains. These molecular data indicate that several of the most important
respiratory pathways arose early in evolution and that the last common ancestor of living organisms was not a simple organism
in its energetic metabolism. Rather, it may have been able to gain energy by means of at least four electron transport chains,
and therefore it may have been prepared to face a wide range of environmental conditions. 相似文献
13.
14.
John Oreopoulos 《Biophysical journal》2009,96(5):1970-1984
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. 相似文献
15.
Carlos E. S. Guedes Jose G. B. Lima Emmanuèle Helfer Patricia S. T. Veras Annie Viallat 《PloS one》2015,10(8)
After phagocytosis by mammalian macrophages, promastigote forms of Leishmania parasites settle inside intracellular parasitophorous vacuoles (PVs) in which they transform into amastigote forms and replicate. Here, using a variant of the ‘inverted emulsion’ method, we succeeded in encapsulating living L. amazonensis parasites in giant artificial liposomes that serve as model PVs. We were able to control the size of liposomes, the pH and the composition of their internal volume, and the number of internalized parasites per liposome. L. amazonensis promastigotes encapsulated in liposomes filled with RPMI-Dextran solution at pH 7.5 or 6.5 survived up to 96 h at 24°C. At 37°C and pH 5.5, parasites survived 48h. This method paves the way to identifying certain effectors secreted by the parasite and to unraveling specific mechanisms of fusion between the PV and intracellular vesicles of the host cell. This method will also facilitate the study of the temporal evolution of biophysical properties of the PV during its maturation. 相似文献
16.
Yagi Y 《Diagnostic pathology》2011,6(Z1):S15
Introduction
Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves.Method
We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&;E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&;E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research.Discussion
As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available.We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality – color.17.
Rana Ashkar Michihiro Nagao Paul?D. Butler Andrea?C. Woodka Mani?K. Sen Tadanori Koga 《Biophysical journal》2015,109(1):106-112
Membrane thickness fluctuations have been associated with a variety of critical membrane phenomena, such as cellular exchange, pore formation, and protein binding, which are intimately related to cell functionality and effective pharmaceuticals. Therefore, understanding how these fluctuations are controlled can remarkably impact medical applications involving selective macromolecule binding and efficient cellular drug intake. Interestingly, previous reports on single-component bilayers show almost identical thickness fluctuation patterns for all investigated lipid tail-lengths, with similar temperature-independent membrane thickness fluctuation amplitude in the fluid phase and a rapid suppression of fluctuations upon transition to the gel phase. Presumably, in vivo functions require a tunability of these parameters, suggesting that more complex model systems are necessary. In this study, we explore lipid tail-length mismatch as a regulator for membrane fluctuations. Unilamellar vesicles of an equimolar mixture of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine molecules, with different tail-lengths and melting transition temperatures, are used as a model system for this next level of complexity. Indeed, this binary system exhibits a significant response of membrane dynamics to thermal variations. The system also suggests a decoupling of the amplitude and the relaxation time of the membrane thickness fluctuations, implying a potential for independent control of these two key parameters. 相似文献
18.
Peter?G. Adams Loreen Lamoureux Kirstie?L. Swingle Harshini Mukundan Gabriel?A. Monta?o 《Biophysical journal》2014,106(11):2395-2407
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions. 相似文献
19.
Peter G. Adams Loreen Lamoureux Kirstie L. Swingle Harshini Mukundan Gabriel A. Montaño 《Biophysical journal》2014
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions. 相似文献
20.
Erdinc Sezgin Theresia Gutmann Tomasz Buhl Ron Dirkx Michal Grzybek ünal Coskun Michele Solimena Kai Simons Ilya Levental Petra Schwille 《PloS one》2015,10(4)
Lateral compositional and physicochemical heterogeneity is a ubiquitous feature of cellular membranes on various length scales, from molecular assemblies to micrometric domains. Segregated lipid domains of increased local order, referred to as rafts, are believed to be prominent features in eukaryotic plasma membranes; however, their exact nature (i.e. size, lifetime, composition, homogeneity) in live cells remains difficult to define. Here we present evidence that both synthetic and natural plasma membranes assume a wide range of lipid packing states with varying levels of molecular order. These states may be adapted and specifically tuned by cells during active cellular processes, as we show for stimulated insulin secretion. Most importantly, these states regulate both the partitioning of molecules between coexisting domains and the bioactivity of their constituent molecules, which we demonstrate for the ligand binding activity of the glycosphingolipid receptor GM1. These results confirm the complexity and flexibility of lipid-mediated membrane organization and reveal mechanisms by which this flexibility could be functionalized by cells. 相似文献