首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein–coupled receptor (GPCR) signaling is fundamental to physiological processes such as vision, the immune response, and wound healing. In the budding yeast Saccharomyces cerevisiae, GPCRs detect and respond to gradients of pheromone during mating. After pheromone stimulation, the GPCR Ste2 is removed from the cell membrane, and new receptors are delivered to the growing edge. The regulator of G protein signaling (RGS) protein Sst2 acts by accelerating GTP hydrolysis and facilitating pathway desensitization. Sst2 is also known to interact with the receptor Ste2. Here we show that Sst2 is required for proper receptor recovery at the growing edge of pheromone-stimulated cells. Mathematical modeling suggested pheromone-induced synthesis of Sst2 together with its interaction with the receptor function to reestablish a receptor pool at the site of polarized growth. To validate the model, we used targeted genetic perturbations to selectively disrupt key properties of Sst2 and its induction by pheromone. Together our results reveal that a regulator of G protein signaling can also regulate the G protein–coupled receptor. Whereas Sst2 negatively regulates G protein signaling, it acts in a positive manner to promote receptor retention at the growing edge.  相似文献   

2.
Sst2 is the prototype for the newly recognized RGS (for regulators of G-protein signaling) family. Cells lacking the pheromone-inducible SST2 gene product fail to resume growth after exposure to pheromone. Conversely, overproduction of Sst2 markedly enhanced the rate of recovery from pheromone-induced arrest in the long-term halo bioassay and detectably dampened signaling in a short-term assay of pheromone response (phosphorylation of Ste4, Gbeta subunit). When the GPA1 gene product (Galpha subunit) is absent, the pheromone response pathway is constitutively active and, consequently, growth ceases. Despite sustained induction of Sst2 (observed with specific anti-Sst2 antibodies), gpa1delta mutants remain growth arrested, indicating that the action of Sst2 requires the presence of Gpa1. The N-terminal domain (residues 3 to 307) of Sst2 (698 residues) has sequence similarity to the catalytic regions of bovine GTPase-activating protein and human neurofibromatosis tumor suppressor protein; segments in the C-terminal domain of Sst2 (between residues 417 and 685) are homologous to other RGS proteins. Both the N- and C-terminal domains were required for Sst2 function in vivo. Consistent with a role for Sst2 in binding to and affecting the activity of Gpa1, the majority of Sst2 was membrane associated and colocalized with Gpa1 at the plasma membrane, as judged by sucrose density gradient fractionation. Moreover, from cell extracts, Sst2 could be isolated in a complex with Gpa1 (expressed as a glutathione S-transferase fusion); this association withstood the detergent and salt conditions required for extraction of these proteins from cell membranes. Also, SST2+ cells expressing a GTPase-defective GPA1 mutant displayed an increased sensitivity to pheromone, whereas sst2 cells did not. These results demonstrate that Sst2 and Gpa1 interact physically and suggest that Sst2 is a direct negative regulator of Gpa1.  相似文献   

3.
4.
Projecting or moving up a chemical gradient is a universal behavior of living organisms. We tested the ability of S. cerevisiae a-cells to sense and respond to spatial gradients of the mating pheromone α-factor produced in a microfluidics chamber; the focus was on bar1Δ strains, which do not degrade the pheromone input. The yeast cells exhibited good accuracy with the mating projection typically pointing in the correct direction up the gradient (∼80% under certain conditions), excellent sensitivity to shallow gradients, and broad dynamic range so that gradient-sensing was relatively robust over a 1000-fold range of average α-factor concentrations. Optimal directional sensing occurred at lower concentrations (5 nM) close to the Kd of the receptor and with steeper gradient slopes. Pheromone supersensitive mutations (sst2Δ and ste2300Δ) that disrupt the down-regulation of heterotrimeric G-protein signaling caused defects in both sensing and response. Interestingly, yeast cells employed adaptive mechanisms to increase the robustness of the process including filamentous growth (i.e. directional distal budding) up the gradient at low pheromone concentrations, bending of the projection to be more aligned with the gradient, and forming a more accurate second projection when the first projection was in the wrong direction. Finally, the cells were able to amplify a shallow external gradient signal of α-factor to produce a dramatic polarization of signaling proteins at the front of the cell. Mathematical modeling revealed insights into the mechanism of this amplification and how the supersensitive mutants can disrupt accurate polarization. Together, these data help to specify and elucidate the abilities of yeast cells to sense and respond to spatial gradients of pheromone.  相似文献   

5.
SST2 plays an important role in the sensitivity of yeast cells to pheromone and in recovery from pheromone-induced G1 arrest. Recently, a family of Sst2p homologs that act as GTPase-activating proteins (GAPs) for G alpha subunits has been identified. We have identified an interaction between Sst2p and the previously identified Mpt5p by using the two-hybrid system. Loss of Mpt5p function resulted in a temperature-sensitive growth phenotype, an increase in pheromone sensitivity, and a defect in recovery from pheromone-induced G1 arrest, although the effects on pheromone response and recovery were mild in comparison to those of sst2 mutants. Overexpression of either Sst2p or Mpt5p promoted recovery from G1 arrest. Promotion of recovery by overexpression of Mpt5p required Sst2p, but the effect of overexpression of Sst2p was only partially dependent on Mpt5p. Mpt5p was also found to interact with the mitogen-activated protein kinase homologs Fus3p and Kss1p, and an mpt5 mutation was able to suppress the pheromone arrest and mating defects of a fus3 mutant. Because either mpt5 or cln3 mutations suppressed the fus3 phenotypes, interactions of Mpt5p with the G1 cyclins and Cdc28p were tested. An interaction between Mpt5p and Cdc28p was detected. We discuss these results with respect to a model in which Sst2p plays a role in pheromone sensitivity and recovery that acts through Mpt5p in addition to a role as a G alpha GAP suggested by the analysis of the Sst2p homologs.  相似文献   

6.
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.  相似文献   

7.
We have characterized a novel member of the recently identified family of regulators of heterotrimeric G protein signalling (RGS) in the yeast Saccharomyces cerevisiae. The YOR107w/RGS2 gene was isolated as a multi-copy suppressor of glucose-induced loss of heat resistance in stationary phase cells. The N-terminal half of the Rgs2 protein consists of a typical RGS domain. Deletion and overexpression of Rgs2, respectively, enhances and reduces glucose-induced accumulation of cAMP. Overexpression of RGS2 generates phenotypes consistent with low activity of cAMP-dependent protein kinase A (PKA), such as enhanced accumulation of trehalose and glycogen, enhanced heat resistance and elevated expression of STRE-controlled genes. Deletion of RGS2 causes opposite phenotypes. We demonstrate that Rgs2 functions as a negative regulator of glucose-induced cAMP signalling through direct GTPase activation of the Gs-alpha protein Gpa2. Rgs2 and Gpa2 constitute the second cognate RGS-G-alpha protein pair identified in yeast, in addition to the mating pheromone pathway regulators Sst2 and Gpa1. Moreover, Rgs2 and Sst2 exert specific, non-overlapping functions, and deletion mutants in Rgs2 and Sst2 are complemented to some extent by different mammalian RGS proteins.  相似文献   

8.
Strains of both haploid mating types containing sst2 mutations are altered in response to pheromone; MATa sst2 cells are supersensitive to alpha-factor, and MAT alpha sst2 cells are supersensitive to a-factor. This phenotype suggests that SST2 encodes a component of the pheromone response pathway that is common to both mating types. We have cloned the SST2 gene by isolation of multicopy plasmids that complement the sst2-1 mutation. One such plasmid contained a 4.5-kilobase HindIII fragment that was able to complement the sst2-1 mutation in high or low copy number, integrated at the SST2 locus, and resulted in an sst2 phenotype when disrupted, indicating that this fragment contained the SST2 gene. We identified the functional region of the complementing DNA fragment by transposon mutagenesis. Sequencing of this fragment identified an open reading frame encoding 698 amino acids at a position that correlated well with the functional region. Expression of an Sst2-beta-galactosidase fusion was haploid specific and induced by exposure to pheromone. We discuss a model in which induction of the SST2 product results in inhibition of a component of the pheromone response pathway, resulting in desensitization to pheromone.  相似文献   

9.
10.
11.
12.
B E Xu  K R Skowronek  J Kurjan 《Genetics》2001,159(4):1559-1571
The Saccharomyces cerevisiae RGS protein Sst2p is involved in desensitization to pheromone and acts as a GTPase-activating protein for the Galpha subunit Gpa1p. Other results indicate that Sst2p acts through Mpt5p and that this action occurs downstream of Fus3p and through Cln3p/Cdc28p. Our results indicate that the interaction of Sst2p with Mpt5p requires the N-terminal MPI (Mpt5p-interacting) domain of Sst2p and is independent of the C-terminal RGS domain. Overexpression of the MPI domain results in an Mpt5p-dependent increase in recovery from pheromone arrest. Overexpression of either intact Sst2p or the MPI domain leads to partial suppression of a gpa1 growth defect, and this suppression is dependent on Mpt5p, indicating that MPI function occurs downstream of Gpa1p and through Mpt5p. Combination of an mpt5 mutation with the GPA1(G302S) mutation, which uncouples Gpa1p from Sst2p, results in pheromone supersensitivity similar to the sst2 mutant, and promotion of recovery by overexpression of Sst2p is dependent on both Mpt5p and the Gpa1p interaction. These results indicate that Sst2p is a bifunctional protein and that the MPI domain acts through Mpt5p independently of the RGS domain. RGS family members from other fungi contain N-terminal domains with sequence similarity to the Sst2p MPI domain, suggesting that MPI function may be conserved.  相似文献   

13.
Pheromone-regulated Genes Required for Yeast Mating Differentiation   总被引:24,自引:1,他引:23       下载免费PDF全文
Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for β-galactosidase (β-gal) expression in the presence and absence of α factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell–cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: β-gal and Fig2::β-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.  相似文献   

14.
15.
According to receptor theory, the effect of a ligand depends on the amount of agonist–receptor complex. Therefore, changes in receptor abundance should have quantitative effects. However, the response to pheromone in Saccharomyces cerevisiae is robust (unaltered) to increases or reductions in the abundance of the G‐protein‐coupled receptor (GPCR), Ste2, responding instead to the fraction of occupied receptor. We found experimentally that this robustness originates during G‐protein activation. We developed a complete mathematical model of this step, which suggested the ability to compute fractional occupancy depends on the physical interaction between the inhibitory regulator of G‐protein signaling (RGS), Sst2, and the receptor. Accordingly, replacing Sst2 by the heterologous hsRGS4, incapable of interacting with the receptor, abolished robustness. Conversely, forcing hsRGS4:Ste2 interaction restored robustness. Taken together with other results of our work, we conclude that this GPCR pathway computes fractional occupancy because ligand‐bound GPCR–RGS complexes stimulate signaling while unoccupied complexes actively inhibit it. In eukaryotes, many RGSs bind to specific GPCRs, suggesting these complexes with opposing activities also detect fraction occupancy by a ratiometric measurement. Such complexes operate as push‐pull devices, which we have recently described.  相似文献   

16.
17.
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K+ channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4−/−, Rgs6−/−, and Rgs4−/−:Rgs6−/− mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6−/− mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6−/− and Gβ5−/− mice, suggest that the partial rescue of phenotypes in Rgs4−/−:Rgs6−/− mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.  相似文献   

18.
19.
The pheromone response ofSaccharomyces cerevisiae is mediated by a receptor-coupled heterotrimeric G protein. The βγ subunit of the G protein stimulates a PAK/MAP kinase cascade that leads to cellular changes preparatory to mating, while the pheromone-responsive Gα protein, Gpa1, antagonizes the Gβγ-induced signal. In its inactive conformation, Gpa1 sequesters Gβγ and tethers it to the receptor. In its active conformation, Gpa1 stimulates adaptive mechanisms that downregulate the mating signal, but which are independent of α-βγ binding. To elucidate these potentially novel signaling functions of Gα in yeast, epistasis analyses were performed using N388D, a hyperadaptive mutant form of Gpa1, and null alleles of various loci that have been implicated in adaptation. The results of these experiments indicate the existence of signaling thresholds that affect the yeast mating reaction. At low pheromone concentration, the Regulator of G Protein Signaling (RGS) homologue and putative guanosine triphosphatase (GTPase) activating protein, Sst2, appears to stimulate sequestration of Gβγ by Gpa1. Throughout the range of pheromone concentrations sufficient to cause cell cycle arrest, Gpa1 stimulates adaptive mechanisms that are partially dependent on Msg5 and Mpt5. Gpa1-mediated adaptation appears to be independent of Afr1, Akr1, and the carboxy-terminus of the pheromone receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号