共查询到20条相似文献,搜索用时 0 毫秒
1.
Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches. 总被引:10,自引:0,他引:10
下载免费PDF全文

The mechanisms of inactivation gating of the neuronal somatodendritic A-type K(+) current and the cardiac I(to) were investigated in Xenopus oocyte macropatches expressing Kv4.1 and Kv4.3 channels. Upon membrane patch excision (inside-out), Kv4.1 channels undergo time-dependent acceleration of macroscopic inactivation accompanied by a parallel partial current rundown. These changes are readily reversible by patch cramming, suggesting the influence of modulatory cytoplasmic factors. The consequences of these perturbations were investigated in detail to gain insights into the biophysical basis and mechanisms of inactivation gating. Accelerated inactivation at positive voltages (0 to +110 mV) is mainly the result of reducing the time constant of slow inactivation and the relative weight of the slow component of inactivation. Concomitantly, the time constants of closed-state inactivation at negative membrane potentials (-90 to -50 mV) are substantially decreased in inside-out patches. Deactivation is moderately accelerated, and recovery from inactivation and the peak G--V curve exhibit little or no change. In agreement with more favorable closed-state inactivation in inside-out patches, the steady-state inactivation curve exhibits a hyperpolarizing shift of approximately 10 mV. Closed-state inactivation was similarly enhanced in Kv4.3. An allosteric model that assumes significant closed-state inactivation at all relevant voltages can explain Kv4 inactivation gating and the modulatory changes. 相似文献
2.
Annette C. Hurst Philip A. Gottlieb Boris Martinac 《European biophysics journal : EBJ》2009,38(4):415-425
The spider peptide GsMTx4, at saturating concentration of 5 μM, is an effective and specific inhibitor for stretch-activated
mechanosensitive (MS) channels found in a variety of eukaryotic cells. Although the structure of the peptide has been solved,
the mode of action remains to be determined. Because of its amphipathic structure, the peptide is proposed to interact with
lipids at the boundaries of the MS channel proteins. In addition, GsMTx4 has antimicrobial effects, inhibiting growth of several
species of bacteria in the range of 5–64 μM. Previous studies on prokaryotic MS channels, which serve as model systems to
explore the principle of MS channel gating, have shown that various amphipathic compounds acting at the protein–lipid interface
affect MS channel gating. We have therefore analyzed the effect of different concentrations of extracellular GsMTx4 on MS
channels of small conductance, MscS and MscK, in the cytoplasmic membrane of wild-type E. coli spheroplasts using the patch-clamp technique. Our study shows that the peptide GsMTx4 exhibits a biphasic response in which
peptide concentration determines inhibition or potentiation of activity in prokaryotic MS channels. At low peptide concentrations
of 2 and 4 μM the gating of the prokaryotic MS channels was hampered, manifested by a decrease in pressure sensitivity. In
contrast, application of peptide at concentrations of 12 and 20 μM facilitated prokaryotic MS channel opening by increasing
the pressure sensitivity. 相似文献
3.
The division site in both chloroplasts and bacteria is established by the medial placement of the FtsZ ring, a process that is in part regulated by the evolutionarily conserved components of the Min system. We recently showed that mechanosensitive ion channels influence FtsZ ring assembly in both Arabidopsis thaliana chloroplasts and in Escherichia coli; in chloroplasts they do so through the same genetic pathway as the Min system. Here we describe the effect of heterologous expression of the Arabidopsis MS channel homolog MSL2 on FtsZ ring placement in E. coli. We also discuss possible molecular mechanisms by which MS channels might influence chloroplast or bacterial division. 相似文献
4.
Xiantao Li Markus Rapedius Thomas Baukrowitz Gong Xin Liu D.K. Srivastava Jürgen Daut Peter J. Hanley 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
5-Hydroxydecanoate (5-HD) inhibits preconditioning, and it is assumed to be a selective inhibitor of mitochondrial ATP-sensitive K+ (mitoKATP) channels. However, 5-HD is a substrate for mitochondrial outer membrane acyl-CoA synthetase, which catalyzes the reaction: 5?HD + CoA + ATP → 5-HD-CoA (5-hydroxydecanoyl-CoA) + AMP + pyrophosphate. We aimed to determine whether the reactants or principal product of this reaction modulate sarcolemmal KATP (sarcKATP) channel activity.Methods
Single sarcKATP channel currents were measured in inside-out patches excised from rat ventricular myocytes. In addition, sarcKATP channel activity was recorded in whole-cell configuration or in giant inside-out patches excised from oocytes expressing Kir6.2/SUR2A.Results
5-HD inhibited (IC50 ∼ 30 μM) KATP channel activity, albeit only in the presence of (non-inhibitory) concentrations of ATP. Similarly, when the inhibitory effect of 0.2 mM ATP was reversed by 1 μM oleoyl-CoA, subsequent application of 5-HD blocked channel activity, but no effect was seen in the absence of ATP. Furthermore, we found that 1 μM coenzyme A (CoA) inhibited sarcKATP channels. Using giant inside-out patches, which are weakly sensitive to “contaminating” CoA, we found that Kir6.2/SUR2A channels were insensitive to 5-HD-CoA. In intact myocytes, 5-HD failed to reverse sarcKATP channel activation by either metabolic inhibition or rilmakalim.General significance
SarcKATP channels are inhibited by 5-HD (provided that ATP is present) and CoA but insensitive to 5-HD-CoA. 5-HD is equally potent at “directly” inhibiting sarcKATP and mitoKATP channels. However, in intact cells, 5-HD fails to inhibit sarcKATP channels, suggesting that mitochondria are the preconditioning-relevant targets of 5-HD. 相似文献5.
Effects of Cd2+, Co2+, Pb2+, Fe2+ and Mg2+ (1-100 microM) on single-channel properties of the intermediate conductance Ca(2+)-activated K+ (CaK) channels were investigated in inside-out patches of human erythrocytes in a physiological K+ gradient. Cd2+, Co2+ and Pb2+, but not Fe2+ and Mg2+, were able to induce CaK channel openings. The potency of the metals to open CaK channels in human erythrocytes follows the sequence Pb2+, Cd2+ > Ca2+ > or = Co2+ > Mg2+, Fe2+. At higher concentrations Pb2+, Cd2+ and Co2+ block the CaK channel by reducing the opening frequency and the single-channel current amplitude. The potency of the metals to reduce CaK channel opening frequency follows the sequence Pb2+ > Cd2+, Co2+ > Ca2+, which differs from the potency sequence Cd2+ > Pb2+, Co2+ > Ca2+ to reduce the unitary single-channel current amplitude. Fe2+ reduced the channel opening frequency and enhanced the two open times of CaK channels activated by Ca2+, whereas up to 100 microM Mg2+ had no effect on any of the measured single-channel parameters. It is concluded that the activation of CaK channels of human erythrocytes by various metal ions occurs through an interaction with the same regulatory site at which Ca2+ activates these channels. The different potency orders for the activating and blocking effects suggest the presence of at least one activation and two blocking sites. A modulatory binding site for Fe2+ exists as well. In addition, the CaK channels in human erythrocytes are distinct from other subtypes of Ca(2+)-activated K+ channels in their sensitivity to the metal ions. 相似文献
6.
MscS and MscL are mechanosensitive channels found in bacterial plasma membranes that open large pores in response to membrane tension. These channels function to alleviate excess cell turgor invoked by rapid osmotic downshock. Although much is known of the structure and molecular mechanisms underlying MscL, genes correlating with MscS activity have only recently been identified. Previously, it was shown that eliminating the expression of Escherichia coli yggB removed a major portion of MscS activity. YggB is distinct from MscL by having no obvious structural similarity. Here we have reconstituted purified YggB in proteoliposomes and have successfully detected MscS channel activity, confirming that purified YggB protein encodes MscS activity. Additionally, to define functional regions of the channel protein, we have randomly mutagenized the structural gene and isolated a mutant that evokes a gain-of-function phenotype. Physiological experiments demonstrate that the mutated channel allows leakage of solutes from the cell, suggesting inappropriate channel opening. Interestingly, this mutation is analogous in position and character to mutations yielding a similar phenotype in MscL. Hence, although MscS and MscL mechanosensitive channels are structurally quite distinct, there may be analogies in their gating mechanisms. 相似文献
7.
《Channels (Austin, Tex.)》2013,7(4):246-254
We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave kon = 13 x 106 M?1s?1 and koff = 1609 sec?1 with KD = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a KD = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle. 相似文献
8.
Tiffany C. Ho Natalie A. Horn Tuan Huynh Lucy Kelava Jeffry B. Lansman 《Channels (Austin, Tex.)》2012,6(4):246-254
We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave kon = 13 x 106 M−1s−1 and koff = 1609 sec−1 with KD = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a KD = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle. 相似文献
9.
Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering. 相似文献
10.
Gating of maxi K+ channels studied by Ca2+ concentration jumps in excised inside-out multi-channel patches (myocytes from guinea pig urinary bladder)
下载免费PDF全文

Currents through maxi K+ channels were recorded in inside-out macro-patches. Using a liquid filament switch (Franke, C., H. Hatt, and J. Dudel. 1987. Neurosci, Lett. 77:199-204) the Ca2+ concentration at the tip of the patch electrode ([Ca2+]i) was changed in less than 1 ms. Elevation of [Ca2+]i from less than 10 nM to 3, 6, 20, 50, 320, or 1,000 microM activated several maxi K+ channels in the patch, whereas return to less than 10 nM deactivated them. The time course of Ca(2+)-dependent activation and deactivation was evaluated from the mean of 10-50 sweeps. The mean currents started a approximately 10-ms delay that was attributed to diffusion of Ca2+ from the tip to the K+ channel protein. The activation and deactivation time courses were fitted with the third power of exponential terms. The rate of activation increased with higher [Ca2+]i and with more positive potentials. The rate of deactivation was independent of preceding [Ca2+]i and was reduced at more positive potentials. The rate of deactivation was measured at five temperatures between 16 and 37 degrees C; fitting the results with the Arrhenius equation yielded an energy barrier of 16 kcal/mol for the Ca2+ dissociation at 0 mV. After 200 ms, the time-dependent processes were in a steady state, i.e., there was no sign of inactivation. In the steady state (200 ms), the dependence of channel openness, N.P(o), on [Ca2+]i yielded a Hill coefficient of approximately 3. The apparent dissociation constant, KD, decreased from 13 microM at -50 mV to 0.5 microM at +70 mV. The dependence of N.P(o) on voltage followed a Boltzmann distribution with a maximal P(o) of 0.8 and a slope factor of approximately 39 mV. The results were summarized by a model describing Ca2+- and voltage-dependent activation and deactivation, as well as steady-state open probability by the binding of Ca2+ to three equal and independent sites within the electrical field of the membrane at an electrical distance of 0.31 from the cytoplasmic side. 相似文献
11.
I Szabo V Petronilli L Guerra M Zoratti 《Biochemical and biophysical research communications》1990,171(1):280-286
A patch-clamp investigation was carried out on giant Escherichia coli spheroplasts. The membrane exhibited stretch-induced as well as "spontaneous" activity, with similar characteristics, i.e., a large number of conductance values arising from the cooperative behavior of channels in functional clusters. It appears likely that the same molecular species are responsible for both stretch-induced and "spontaneous" current conduction; the channel multiplexes can either respond to membrane stretch or function in an activate state, presumably brought about by the previous application of the mechanical stimulus. 相似文献
12.
Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches.
下载免费PDF全文

A Y Kabakov 《Biophysical journal》1998,75(6):2858-2867
Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, zero calcium), and IC50 of ATP for IK-ATP (0.3 +/- 0.1 mM) by 2/5. The Na+/Li+ replacement had no effect on IK-ATP at low pump activity ([ATP] </= 0.1 mM or 100 microM ouabain) or when IK-ATP was completely inhibited by 10 mM ATP. In whole-cell configuration, ouabain inhibited up to 60% of inwardly rectifying IK-ATP at 1 mM ATP in the pipette but not at 10 mM ATP and 10 mM phosphocreatine when IK-ATP was always blocked. However, mathematical simulation of giant-patch experiments revealed that only 20% of ATP depletion may be attributed to the ATP concentration gradient in the bulk solution, and the remaining 80% probably occurs in the submembrane space. 相似文献
13.
《Channels (Austin, Tex.)》2013,7(4):262-271
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels. 相似文献
14.
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels. 相似文献
15.
Database searches in the Corynebacterium glutamicum genome sequence revealed homologs of the mechanosensitive channels MscL and YggB of Escherichia coli. To elucidate the physiological role of these putative channels deletion mutants were constructed. Betaine efflux induced by osmotic downshock of the mscL deletion mutant was nearly identical to that of the wild-type, whereas the yggB deletion mutant showed a reduced efflux rate. Interestingly, the double deletion strain, which was expected to have an even more decreased capability of betaine excretion, had only a slightly reduced efflux rate compared to the wild-type and did not show an increased mortality after osmotic downshift. These results led to the hypothesis that C. glutamicum may possess a third type of mechanosensitive channel not related to the MscL and YggB/KefA families. Furthermore it is unlikely that an MscM-like activity is responsible for the betaine efflux, because of the high transport capacity detected in the double deletion mutant. 相似文献
16.
Single-channel activity was recorded from cell-attached membrane patches on flexor digitorum brevis fibres acutely isolated from normal and mdx mice at different stages of postnatal development. Recordings from cell-attached patches on both normal and mdx fibres were dominated by the activity of mechanosensitive ion channels with a conductance of approximately 17 pS with 110 mM Ba2+ in the patch electrode. In a small fraction of the patches on mdx fibres from young mice, channels showed very high levels of activity. Channel activity recorded from mdx fibres from older mice was higher than in age-matched normal fibres and the level of activity decreased during development. Channel density decreased in normal fibres, whereas it remained relatively constant in mdx fibres, as if channels are down-regulated in normal, but not mdx, fibres during postnatal development. An early step in the dystrophic process may be an alteration of the mechanisms that regulate the expression of functional channels. 相似文献
17.
Parabens are alkyl esters of p-hydroxybenzoic acid used as preservatives in a wide range of food, pharmaceutical, and cosmetic products (Soni et al. Food Chem. Toxicol. 39:513–532, 2001). Despite their common use for over 50 years, their mechanism of action is still unclear. In this study we examined the effects of ethyl and propyl paraben, on gating of the E. coli mechanosensitive channel of large conductance (MscL) reconstituted into azolectin liposomes. We found that propyl and ethyl paraben spontaneously activate MscL. Moreover, the addition of propyl paraben caused an increase in MscL activity and the lowering of p1/2, the pressure at which the MscL was opened 50% of the time, the Go, the free energy required to open the MscL, and the parameter , which describes the channel sensitivity to pressure. In addition, in silico studies showed that propyl paraben binds to the channel gate of the MscL. The mechanosensitive channel of small conductance was also found to be spontaneously activated by parabens. In summary, our study indicates that one of the previously unidentified mechanisms of action of parabens as antimicrobial agents is via an interaction with the mechanosensitive channels to upset the osmotic gradients in bacteria.This revised version was published online in March 2005 with corrections to Figure 6. 相似文献
18.
We have investigated the effect of high hydrostatic pressure on MscS, the bacterial mechanosensitive channel of small conductance. Pressure affected channel kinetics but not conductance. At negative pipette voltages (corresponding to membrane depolarization in the inside-out patch configuration used in our experiments) the channel exhibited a reversible reduction in activity with increasing hydrostatic pressure between 0 and 900 atm (90 MPa) at 23°C. The reduced activity was characterized by a significant reduction in the channel opening probability resulting from a shortening of the channel openings with increasing pressure. Thus high hydrostatic pressure generally favoured channel closing. Cooling the patch by approximately 10°C, intended to order the bilayer component of the patch by an amount similar to that caused by 50 MPa at 23°C, had relatively little effect. This implies that pressure does not affect channel kinetics via bilayer order. Accordingly we postulate that lateral compression of the bilayer, under high hydrostatic pressure, is responsible. These observations also have implications for our understanding of the adaptation of mechanosensitive channels in deep-sea bacteria.A Proceeding of the 28th Annual Meeting of the Australian Society for Biophysics. 相似文献
19.
Hurst AC Petrov E Kloda A Nguyen T Hool L Martinac B 《The international journal of biochemistry & cell biology》2008,40(4):581-585
The mechanosensitive channel of small conductance, MscS, is one of the most extensively studied MS channels to date. Past and present research involves the discovery of its physiological role as an emergency valve in prokaryotes up to detailed investigations of its conductive properties and gating mechanism. In this review, we summarize the findings on its structure and function obtained by experimental and theoretical approaches. A special focus is given to its pharmacology, since various compounds have been shown to affect the activity of this channel. These compounds have particularly been helpful for understanding the interaction of MscS with the lipid bilayer, as well as recognizing the potential of this channel as a target for novel types of antibiotics. 相似文献
20.
Ca2+-ATPase activity and Ca2+ uptake in inside-out vesicles from human red cell membranes are changed in parallel by p-nitrophenylphosphate. This indicates that, unlike the Ca2+ pump of sarcoplasmic reticulum, the Ca2+ pump of the red cell membrane does not utilize p-nitrophenylphosphate hydrolysis to drive Ca2+ transport. 相似文献