首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are of the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important for understanding their functionality. We present a model that can account, thermodynamically, for the observed size of the tubules. The model contains two lipid constituents with different shapes. They are allowed to distribute in such a way that the composition differs on the two sides of the tubular membrane. Our calculations make two predictions: (1) there is a pressure difference of 0.2 atmospheres across the inner membrane as a necessary consequence of the experimentally observed tubule radius of 10 nm, and (2) migration of differently shaped lipids causes concentration variations of the order of 7% between the two sides of the tubular membrane.  相似文献   

2.
3.
Diffusion of inner membrane proteins is a prerequisite for correct functionality of mitochondria. The complicated structure of tubular, vesicular or flat cristae and their small connections to the inner boundary membrane impose constraints on the mobility of proteins making their diffusion a very complicated process. Therefore we investigate the molecular transport along the main mitochondrial axis using highly accurate computational methods. Diffusion is modeled on a curvilinear surface reproducing the shape of mitochondrial inner membrane (IM). Monte Carlo simulations are carried out for topologies resembling both tubular and lamellar cristae, for a range of physiologically viable crista sizes and densities. Geometrical confinement induces up to several-fold reduction in apparent mobility. IM surface curvature per se generates transient anomalous diffusion (TAD), while finite and stable values of projected diffusion coefficients are recovered in a quasi-normal regime for short- and long-time limits. In both these cases, a simple area-scaling law is found sufficient to explain limiting diffusion coefficients for permeable cristae junctions, while asymmetric reduction of the junction permeability leads to strong but predictable variations in molecular motion rate. A geometry-based model is given as an illustration for the time-dependence of diffusivity when IM has tubular topology. Implications for experimental observations of diffusion along mitochondria using methods of optical microscopy are drawn out: a non-homogenous power law is proposed as a suitable approach to TAD. The data demonstrate that if not taken into account appropriately, geometrical effects lead to significant misinterpretation of molecular mobility measurements in cellular curvilinear membranes.  相似文献   

4.
In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.  相似文献   

5.
A theoretical basis for the apparent correlation between osmotic swelling of the mitochondrial matrix space and tubularization of the inner mitochondrial membrane is proposed. The proposal rests on the assumption that tubularization arises as a consequence of a difference in the interfacial tension on the two sides of the membrane. A membrane analogue of Laplace's equation is derived relating the osmotic pressure difference across the tubular membrane to the difference in interfacial tension.  相似文献   

6.
The structure of neuronal mitochondria from chick and rat was examined using electron microscope tomography of chemically fixed tissue embedded in plastic and sliced in ≈500-nm-thick sections. Three-dimensional reconstructions of representative mitochondria were made from single-axis tilt series acquired with an intermediate voltage electron microscope (400 kV). The tilt increment was either 1° or 2° ranging from −60° to +60°. The mitochondrial ultrastructure was similar across species and neuronal regions. The outer and inner membranes were each ≈7 nm thick. The inner boundary membrane was found to lie close to the outer membrane, with a total thickness across both membranes of ≈22 nm. We discovered that the inner membrane invaginates to form cristae only through narrow, tubular openings, which we call crista junctions. Sometimes the cristae remain tubular throughout their length, but often multiple tubular cristae merge to form lamellar compartments. Punctate regions, ≈14 nm in diameter, were observed in which the inner and outer membranes appeared in contact (total thickness of both membranes ≈14 nm). These contact sites are known to a play a key role in the transport of proteins into the mitochondrion. It has been hypothesized that contact sites may be proximal to crista junctions to facilitate transport of proteins destined for the cristae. However, our statistical analyses indicated that contact sites are randomly located with respect to these junctions. In addition, a close association was observed between endoplasmic reticulum membranes and the outer mitochondrial membrane, consistent with the reported mechanism of transport of certain lipids into the mitochondrion.  相似文献   

7.
The internal structure of mitochondria   总被引:24,自引:0,他引:24  
Electron microscopic (EM) tomography is providing important new insights into the internal organization of mitochondria. The standard baffle model for cristae structure, called into question years ago, has now clearly been shown to be inaccurate. Depending on source and conformational state, cristae can vary from simple tubular structures to more complex lamellar structures merging with the inner boundary membrane through tubular structures 28 nm in diameter. The structural information provided by EM tomography has important implications for mitochondrial bioenergetics, biogenesis and the role of mitochondria in apoptosis. The structural paradigm defined by EM tomography is helping in the design of new experimental approaches to mitochondrial function.  相似文献   

8.
A new model of cellular transport is presented, characterized by selective fluxes due to membrane fluidity gradient. This mechanism is treated in terms of the interfacial tensions at the membrane/cytoplasm and membrane/medium surfaces. A higher interior fluidity (lower interfacial tension) is maintained by cytoplasm adenosine triphosphate, which adsorbs and increases lipoprotein fluidity while it also chelates calcium and keeps it from inner membrane sites. The high medium calcium causes a stiffer membrane (higher interfacial tension) on the medium side. These two different free energy barriers at inner and outer channel mouths filter all molecules, whether ionized or nonelectrolytic. Molecules with excess of hydrophobic groups, which makes negative the free energy of transfer from the medium into the membrane, have highest influx. Intermolecular salt linkages and hydrogen-bonding are vital in making negative the free energy of transfer of amino acids and sugars. The much lower energy barrier at the cytoplasmic interface favors net efflux from the cell of the more polar ions and amphipaths. Intramembrane particles are proposed as the channel sites.  相似文献   

9.
In a mutant form of Neurospora crassa, in which sheltered RIP (repeat induced point mutation) was used to deplete Tom19, protein transport through the TOM/TIM pathway is arrested by the addition of p-fluorophenylalanine (FPA). Using intermediate-voltage electron tomography, we have generated three-dimensional reconstructions of 28 FPA-treated mitochondria at four time points (0-32 h) after the addition of FPA. We determined that the cristae surface area and volume were lost in a roughly linear manner. A decrease in mitochondrial volume was not observed until after 16 h of FPA treatment. The inner boundary membrane did not appear to shrink or contract away from the outer membrane. Interestingly, the close apposition of these membranes remained over the entire periphery, even after all of the cristae had disappeared. The different dynamics of the shrinkage of cristae membrane and inner boundary membrane has implications for compartmentalization of electron transport proteins. Two structurally distinct types of contact sites were observed, consistent with recently published work. We determined that the cristae in the untreated (control) mitochondria are all lamellar. The cristae of FPA-treated mitochondria retain the lamellar morphology as they reduce in size and do not adopt tubular shapes. Importantly, the crista junctions exhibit tubular as well as slot-like connections to the inner boundary membrane, persisting until the cristae disappear, indicating that their stability is not dependent on continuous protein import through the complex containing Tom19.  相似文献   

10.
Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free of outer membrane components. Third, import into purified inner membrane vesicles is insensitive to antibody against the outer membrane. Thus, while outer membrane components are clearly required in vivo, the inner membrane contains a complete protein translocation system that can operate by itself if the outer membrane barrier is removed.  相似文献   

11.
The possible role of non-bilayer phospholipids on the structure of isolated rat liver mitochondria has been morphologically studied. Freshly isolated freeze-fractured mitochondria show smooth fracture faces with particles, representing the limiting membranes. The frequency and size of the particles is representative for the various membrane faces. Distinctly large particles and pits represent the attachment sites of cristae to the inner membrane. Liposome-like structures in the matrix are found upon incubation with Ca2+ and Mn2+. At 5 mM Mn2+ and more, curved hexagonal (HII) phase tubes are observed. Subsequent addition of 1 mM EDTA results in disappearance of the HII tubes, and liposomal structures can again be seen. These findings are interpreted in terms of an Mn2+-induced lamellar to HII phase transition. Patchwork-like structures characterize the membranes of mitochondria, quenched from 37 degrees C, as well as those incubated with Ca2+, Mn2+, Mg2+ and apo- or cytochrome c. This phenomenon is interpreted as being the result of the fracture plane, jumping from the outer to the inner limiting membrane and vice versa at sites of contact. A semi-fusion model, in which non-bilayer lipids are involved, is proposed for these contact sites.  相似文献   

12.
Morphologically intact structures have been isolated from anaerobically grown yeast cells which have many of the properties of yeast mitochondria. The structures are about 0.5 µ in diameter and contain malate dehydrogenase, succinate dehydrogenase, oligomycin-sensitive ATPase, and DNA of buoyant density 1.683 g/cc, characteristic of yeast mitochondria. The morphology of the structures is critically dependent on their lipid composition. When isolated from cells grown anaerobically in the presence of supplements of unsaturated fatty acid and ergosterol, their unsaturated fatty acid content is similar to that of mitochondria from aerobically grown cells. These lipid-complete structures consist pre-dominantly of double-membrane vesicles enclosing a dense matrix which contains a folded inner membrane system bordering electron-transparent regions which are somewhat different from the cristae of functional mitochondria. In contrast, the structures from cells grown without lipid supplements are much simpler in morphology; they have a dense granular matrix surrounded by a double membrane but have no obvious folded inner membrane system within the matrix. The lipid-depleted structures are very fragile and are only isolated in intact form from protoplasts that have been prefixed with glutaraldehyde  相似文献   

13.
Cubic membranes occur in a variety of membrane-bound organelles in many cell types. By transmission electron microscopy (TEM) these membrane systems appear to consist of highly curved periodic surfaces that fit mathematical models analogous to those used to describe lipidic cubic phases. For the first time, a naturally occurring cubic membrane system has been reconstructed in three dimensions by electron microscopic tomography, and its periodicity directly characterized. Double-tilt tomographic reconstruction of mitochondria in the amoeba, Chaos carolinensis, confirms that their cristae (inner membrane infoldings) have the cubic structure suggested by modeling studies based on thin-section TEM images. Analysis of the membrane surfaces in the reconstruction reveals the connectivity of the internal compartments within the mitochondria. In the cubic regions, the matrix is highly condensed and confined to a continuous, small space between adjacent cristal membranes. The cristae form large, undulating cisternae that communicate with the peripheral (inner membrane) compartment through narrow tubular segments as seen in other types of mitochondria. The cubic periodicity of these mitochondrial membranes provides an ideal specimen for measuring geometrical distortions in biological electron tomography. It may also prove to be a useful model system for studies of the correlation of cristae–matrix organization with mitochondrial activity.  相似文献   

14.
Long chain free fatty acids (FFA) exert, according to their actual concentration, different effects on the energy conserving system of mitochondria. Sub-micromolar concentrations of arachidonic acid (AA) rescue DeltapH-dependent depression of the proton pumping activity of the bc1 complex. This effect appears to be due to a direct interaction of AA with the proton-input mouth of the pump. At micromolar concentrations FFA increase the proton conductance of the inner membrane acting as protonophores. FFA can act as natural uncouplers, causing a mild uncoupling, which prevents reactive oxygen species production in the respiratory resting state. When Ca(2+)-loaded mitochondria are exposed to micromolar concentrations of FFA, the permeability of the inner membrane increases, resulting in matrix swelling, rupture of the outer membrane and release of intermembrane pro-apoptotic proteins. The characteristics of AA-induced swelling appear markedly different in mitochondria isolated from heart or liver. While in the latter it presents the canonical features of the classical permeability transition (PT), in heart mitochondria substantial differences are observed concerning CsA sensitivity, DeltaPsi dependence, reversibility by BSA and specificity for the activating divalent cation. In heart mitochondria, the AA-dependent increase of the inner membrane permeability is affected by ANT ligands such as adenine nucleotides and atractyloside. AA apparently causes a Ca2+-mediated conversion of ANT from a translocator to a channel system. Upon diamide treatment of heart mitochondria, the Ca2+/AA-induced CsA insensitive channel is converted into the classical PT pore. The relevance of these observations in terms of tissue-specific components of the putative PTP and heart ischemic and post-ischemic process is discussed.  相似文献   

15.
This review summarizes recent findings from electron tomography about the three-dimensional shape of mitochondrial membranes and its possible influence on a range of mitochondrial functions. The inner membrane invaginations called cristae are pleomorphic, typically connected by narrow tubular junctions of variable length to the inner boundary membrane. This design may restrict intra-mitochondrial diffusion of metabolites such as ADP, and of soluble proteins such as cytochrome c. Tomographic images of a variety of mitochondria suggest that inner membrane topology reflects a balance between membrane fusion and fission. Proteins that can affect cristae morphology include tBid, which triggers cytochrome c release in apoptosis, and the dynamin-like protein Mgm1, involved in inter-mitochondrial membrane fusion. In frozen-hydrated rat-liver mitochondria, the space between the inner and outer membranes contains 10-15 nm particles that may represent macromolecular complexes involved in activities that span the two membranes.  相似文献   

16.
The ultrastructure of the spray-like ramified encapsulated corpuscles with the primitive inner core from the joint capsules of the large limb joints of the tortoise (Testudo graeca and Emys orbicularis) was examined. Each of the branches of the receptor consists of three components. Through the middle of the receptor branche runs the nerve terminal, containing in the receptor matrix numerous mitochondria, tiny light vesicles and neurofilaments and neurotubules running in the axial way. The nerve terminal gives off on some places among the inner core cells tiny finger-like processes. The axon is surrounded by the inner core cells and their irregular plasmatic processes. Among the inner core cells and their irregular plasmatic processes there is a labyrinth of spaces, connected centrally with the periaxonal space and with the boundary space on the periphery. The inner core cells are covered on the surface, turning to the boundary space by the basal membrane. The inner core has a very primitive structure, it still lacks the typical lamellar structure. The capsule of the receptor is formed by flat cells, which surround the inner core in 1--3 layers. Between the capsule of the receptor and the inner core is the boundary space, containihg sporadical collagenous fibrils. The structure of the spray-like ramified encapsulated corpuscles with the primitive inner core from the joint capsules of the tortoise is analogous to the simple lamellar receptors from the skin of some reptiles (Von Düring 1973, 1974). The primitive structure of the inner core of the joint receptors in the tortoise reminds of the structure of the inner core of the developing simple (paciniform) corpuscles (Polá?ek and Halata 1970) and Pacinian corpuscles (Malinovsky 1974). The observed nerve endings represent a primitive, early stage in phylogeny development of the lamellar mechanoreceptors.  相似文献   

17.
高度抗寒植物冬季线粒体的电镜观察   总被引:9,自引:0,他引:9  
冬季沙冬青叶肉我线粒体相当丰富,常常位于叶绿体出芽和分裂处,在质膜大量内隐形成管状细胞的附近和含有颗粒状物质、膜状物质或特殊内含和的周围也随时可见了线粒体也经常与微体和叶绿体在一起。有时甚至还不同程度地被内多所包围。沙冬青叶肉细胞中的的线粒一般灯承圆形,被膜清晰完整,嵴丰富,基质电子度较高。有时基质中有小泡或电子密度很高的颗粒和内含物,个别线粒体的基质中学有类髓样体结构。文中讨论了沙冬青线粒体的形  相似文献   

18.
Although the literature contains many studies on the function of UCP3, its role is still being debated. It has been hypothesized that UCP3 may mediate lipid hydroperoxide (LOOH) translocation across the mitochondrial inner membrane (MIM), thus protecting the mitochondrial matrix from this very aggressive molecule. However, no experiments on mitochondria have provided evidence in support of this hypothesis. Here, using mitochondria isolated from UCP3-null mice and their wild-type littermates, we demonstrate the following. (i) In the absence of free fatty acids, proton conductance did not differ between wild-type and UCP3-null mitochondria. Addition of arachidonic acid (AA) to such mitochondria induced an increase in proton conductance, with wild-type mitochondria showing greater enhancement. In wild-type mitochondria, the uncoupling effect of AA was significantly reduced both when the release of O2˙̄ in the matrix was inhibited and when the formation of LOOH was inhibited. In UCP3-null mitochondria, however, the uncoupling effect of AA was independent of the above mechanisms. (ii) In the presence of AA, wild-type mitochondria released significantly more LOOH compared with UCP3-null mitochondria. This difference was abolished both when UCP3 was inhibited by GDP and under a condition in which there was reduced LOOH formation on the matrix side of the MIM. These data demonstrate that UCP3 is involved both in mediating the translocation of LOOH across the MIM and in LOOH-dependent mitochondrial uncoupling.  相似文献   

19.
Bovine adrenal cortex mitochondria examined by electron microscopyin situ orin vitro in 0·25 M sucrose have an unusual cristal membrane structure. The cristae usually appear as unconnected vesicles within a double membrane system. A few of the vesicles appear to be attached to the inner boundary membrane or to one or more other vesicles. The configuration of such mitochondria will be defined as the orthodox configuration. In this communication we will provide evidence that the inner membrane is not composed of multiple vesicles, but is one continuous membrane with tubular invaginations, and that these invaginations alternately are ballooned out and squeezed down. A mechanism has been proposed to account for the differentiated structure of the cristae of adrenal cortex mitochondria.  相似文献   

20.
Trehalose has extensively been used to improve the desiccation tolerance of mammalian cells. To test whether trehalose improves desiccation tolerance of mammalian mitochondria, we introduced trehalose into the matrix of isolated rat liver mitochondria by reversibly permeabilizing the inner membrane using the mitochondrial permeability transition pore (MPTP). Measurement of the trehalose concentration inside mitochondria using high performance liquid chromatography showed that the sugar permeated rapidly into the matrix upon opening the MPTP. The concentration of intra-matrix trehalose reached 0.29 mmol/mg protein (∼190 mM) in 5 min. Mitochondria, with and without trehalose loaded into the matrix, were desiccated in a buffer containing 0.25 M trehalose by diffusive drying. After re-hydration, the inner membrane integrity was assessed by measurement of mitochondrial membrane potential with the fluorescent probe JC-1. The results showed that following drying to similar water contents, the mitochondria loaded with trehalose had significantly higher inner membrane integrity than those without trehalose loading. These findings suggest the presence of trehalose in the mitochondrial matrix affords improved desiccation tolerance to the isolated mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号