共查询到20条相似文献,搜索用时 15 毫秒
1.
Phototropin (phot) is a blue-light sensor protein that elicits several photo responses in plants. Phototropin has two flavin mononucleotide (FMN)-binding domains, LOV1 and LOV2, in its N-terminal half. The C-terminal half is a blue-light-regulated Ser/Thr kinase. Various functional studies have reported that only LOV2 is responsible for the kinase activity, whereas the X-ray crystallographic structures of the LOV1 and LOV2 domains are almost identical. How does such a functional difference emerge? Our previous FTIR study of the LOV domains of Adiantum neochrome1 (neo1) showed that light-induced protein structural changes are small and temperature independent for neo1-LOV1, whereas the structural changes are large and highly temperature dependent for neo1-LOV2, which involve loops, alpha-helices, and beta-sheets. These observations successfully explained the different functions in terms of protein structural changes. They also suggested the presence of some crucial amino acids responsible for greater protein structural changes in the LOV2 domain. Here, we focused on phenylalanine-1010 (Phe1010) in neo1-LOV2, where FMN is sandwiched between Phe1010 and the reactive cysteine. Phenylalanine at this position is conserved for LOV2 domains, while the corresponding amino acid is leucine for LOV1 domains in almost all plant phototropins. We observed that unlike wild-type LOV2, the FTIR spectra of F1010L LOV2 exhibited no temperature dependence in the alpha-helical and beta-sheet regions and that spectral changes in amide-I of these regions were significantly reduced, which was similar to LOV1. Thus, the replacement of phenylalanine with leucine converts neo1-LOV2 into neo1-LOV1 in terms of protein structural changes that must be related to the different functions. We will discuss the roles of phenylalanine and leucine in the LOV2 and LOV1 domains, respectively. 相似文献
2.
Y Engelborghs K Mertens K Willaert Y Luan-Rilliet J A Cox 《The Journal of biological chemistry》1990,265(31):18809-18815
The sarcoplasmic calcium-binding protein (SCP) of the sandworm Nereis possesses three Ca2(+)-Mg2+ sites but no Ca2(+)-specific site. Binding of Mg2+, but not of Ca2+, displays a marked positive cooperativity. The apparent cooperativity of Ca2+ binding in the presence of Mg2+ results from the allostery in Mg2+ dissociation. Binding of the first Ca2+ or Mg2+ induces all the conformational change, monitored by Trp fluorescence. In displacement reactions the conformational changes occur in the step SCP.Mg3----SCP.Ca1Mg2. Stopped-flow experiments indicate that Trp fluorescence changes upon Ca2(+)-binding are instantaneous whereas Mg2(+)-binding involves a fast pre-equilibrium (Keq = 28 M-1), followed by two slow consecutive conformational changes with k1 = 13.5 s-1 and k2 = 0.21 s-1. The fluorescence change after dissociation of Ca2+ from SCP is monophasic with k = 0.02 s-1; that after Mg2+ dissociation is biphasic with k1 = 0.8 s-1 and k2 = 0.1 s-1. Trp life time measurements also indicate that Ca2(+)- and Mg2(+)-induced conformational changes are completely different. Displacement of bound Ca2+ by Mg2+ can be described by two consecutive reactions in which the first (without fluorescence change) corresponds to the dissociation of the last Ca2+ (k1 = 2.4 s-1) and the second (k2 = 0.45 s-1) to the final conformational change observed upon direct Mg2+ binding. Displacement of bound Mg2+ by Ca2+ follows the kinetic scheme of simple competition; the conformational rate constant approaches asymptotically (up to the limit of 129 s-1) the dissociation rate of Mg2+ as the concentration of Ca2+ increases. In summary, after fast dissociation of Ca2+ or Mg2+, Nereis SCP slowly converts to the metal-free configuration, but in Ca2(+)-Mg2+ exchange reactions, the conformational changes are nearly as fast as the cation dissociation reactions. 相似文献
3.
Conformational changes upon protein-protein association are the key element of the binding mechanism. The study presents a systematic large-scale analysis of such conformational changes in the side chains. The results indicate that short and long side chains have different propensities for the conformational changes. Long side chains with three or more dihedral angles are often subject to large conformational transition. Shorter residues with one or two dihedral angles typically undergo local conformational changes not leading to a conformational transition. A relationship between the local readjustments and the equilibrium fluctuations of a side chain around its unbound conformation is suggested. Most of the side chains undergo larger changes in the dihedral angle most distant from the backbone. The frequencies of the core-to-surface interface transitions of six nonpolar residues and Tyr are larger than the frequencies of the opposite surface-to-core transitions. The binding increases both polar and nonpolar interface areas. However, the increase of the nonpolar area is larger for all considered classes of protein complexes, suggesting that the protein association perturbs the unbound interfaces to increase the hydrophobic contribution to the binding free energy. To test modeling approaches to side-chain flexibility in protein docking, conformational changes in the X-ray set were compared with those in the docking decoy sets. The results lead to a better understanding of the conformational changes in proteins and suggest directions for efficient conformational sampling in docking protocols. 相似文献
4.
Nakasone Y Eitoku T Matsuoka D Tokutomi S Terazima M 《Journal of molecular biology》2007,367(2):432-442
Conformational changes of Arabidopsis phot1-LOV2 with the linker (phot1-LOV2-linker) were investigated from the viewpoint of the changes in molecular volume and molecular diffusion coefficient (D) by time-resolved transient grating (TG) and transient lens (TrL) methods. Although the absorption spectrum change completes within a few microseconds, the D-value detected by the TG method decreased drastically with a time constant of 1.0 ms from 9.2(+/-0.4)x10(-11) m(2)/s to 5.0(+/-0.3)x10(-11) m(2)/s. This time-dependent D was interpreted in terms of the unfolding of alpha-helices in the linker region. The change of the alpha-helices was confirmed by observing the recovery of the circular dichroism intensity. The TrL signal showed that the molecular volume decreases with two time constants; 300 micros and 1.0 ms. The former time constant is close to the previously observed photo-dissociation reaction rate of the phot1-LOV2 (without the linker) dimer, and the latter one agrees well with the rate of the D-change. Considering a similar time constant of the dissociation reaction of the LOV2 dimer, we interpreted these kinetics in terms of the dissociation step of the linker region from the LOV2 domain (T(390)(pre) state). After this step, the protein volume and D are decreased significantly with the lifetime of 1.0 ms. The D decrease indicates the increase of the intermolecular interaction between the protein and water molecules. On the basis of these observations, a two-step mechanism of the linker unfolding is proposed. 相似文献
5.
Qing Ma Motomu Shimaoka Chafen Lu Hua Jing Christopher V Carman Timothy A Springer 《The Journal of biological chemistry》2002,277(12):10638-10641
Conformational changes in integrins are important for efficient ligand binding during activation. We proposed that the I domain of the integrin lymphocyte function-associated antigen 1 (LFA-1) could exist in both open and closed conformations and generated constitutively activated LFA-1 by locking the I domain in the open conformation. Here we provide structural and biochemical evidence to validate conformational change in the I domain of LFA-1 upon activation. Two monoclonal antibodies to alpha(L), HI111 and CBR LFA-1/1, bind wild-type LFA-1 well, but their binding is significantly reduced when LFA-1 is locked in the open conformation. Furthermore, this reduction in monoclonal antibody binding also occurs when LFA-1 is activated by divalent cations. HI111 maps to the top region of the I domain that is close to the putative ligand-binding site surrounding the MIDAS (metal ion-dependent adhesion site). The epitope of CBR LFA-1/1 is at the C-terminal segment of the I domain that links to the beta-propeller, and undergoes a large movement between the open and closed conformations. Our data demonstrate that these two regions undergo significant conformational changes during LFA-1 activation and that the I domain of activated LFA-1 adopts a similar tertiary structure as the predicted locked open form. 相似文献
6.
Deprez C Lloubès R Gavioli M Marion D Guerlesquin F Blanchard L 《Journal of molecular biology》2005,346(4):1047-1057
The Tol-Pal system of Escherichia coli is a macromolecular complex located in the cell envelope. It is involved in maintaining the integrity of the outer membrane and is required for the uptake of two different types of macromolecules, which are bacteriotoxins (colicins) and DNA of filamentous bacteriophages. The TolA protein plays a central role in these import mechanisms. Its C-terminal domain (TolAIII) is involved in the translocation step via direct interaction with the N-terminal domain of colicins and the N-terminal domain of the phage minor coat gene 3 protein (g3pN1). Extreme behaviours of TolAIII have been previously observed, since the structure of TolAIII either remained unaffected or adopted disordered conformation upon binding to different pore-forming colicins. Here, we have solved the 3D structure of free TolAIII by heteronuclear NMR spectroscopy and compared it to the crystal structure of TolAIII bound to g3pN1 in order to study the effect of g3pN1 on the tertiary structure of TolAIII. Backbone 1H, 15N and 13C resonances of the g3pN1-bound TolAIII were also assigned and used to superimpose the solution structure of free TolAIII on the crystal structure of the g3pN1-TolAIII fusion protein. This allowed us to track conformational changes of TolAIII upon binding. While the global fold of free TolAIII is mainly identical to that of g3pN1-bound TolAIII, shift of secondary structures does occur. Thus, TolAIII, which interacts also in vivo with Pal and TolB, is able to adapt its conformation upon binding to various partners. Possible models for protein binding mechanisms are discussed to explain this so-far unobserved behaviour of TolAIII. 相似文献
7.
Akanksha Gupta Rahul Agarwal Ashutosh Singh 《Journal of receptor and signal transduction research》2017,37(3):239-251
Context: Thrombospondin1 (TSP1) participates in numerous signaling pathways critical for vascular physiology and disease. The conserved signature domain of thrombospondin 1 (TSP1-Sig1) comprises three epidermal growth factor (EGF), 13 calcium-binding type 3 thrombospondin (T3) repeats, and one lectin-like module arranged in a stalk-wire-globe topology. TSP1 is known to be present in both calcium-replete (Holo-) and calcium-depleted (Apo-) state, each with distinct downstream signaling effects.Objective: To prepare a homology model of TSP1-Sig1 and investigate the effect of calcium on its dynamic structure and interactions.Methods: A homology model of Holo-TSP1-Sig1 was prepared with TSP2 as template in Swissmodel workspace. The Apo-form of the model was obtained by omitting the bound calcium ions from the homology model. Molecular dynamics (MD) simulation studies (100?ns) were performed on the Holo- and Apo- forms of TSP1 using Gromacs4.6.5.Results and discussion: After simulation, Holo-TSP1-Sig1 showed significant reorientation at the interface of the EGF1-2 and EGF2-3 modules. The T3 wire is predicted to show the maximum mobility and deviation from the initial model. In Apo-TSP1-Sig1 model, the T3 repeats unfolded and formed coils with predicted increase in flexibility. Apo-TSP1-Sig1model also predicted the exposure of the binding sites for neutrophil elastase, integrin and fibroblast growth factor 2. We present a structural model and hypothesis for the role of TSP1-Sig1 interactions in the development of vascular disorders.Conclusion: The simulated model of the fully calcium-loaded and calcium-depleted TSP1-Sig1 may enable the development of its interactions as a novel therapeutic target for the treatment of vascular diseases. 相似文献
8.
p-Hydroxybenzoate hydroxylase (PHBH) is an FAD-dependent monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (pOHB) to 3,4-dihydroxybenzoate in an NADPH-dependent reaction. Two structural features are coupled to control the reactivity of PHBH with NADPH: a proton-transfer network that allows protons to be passed between the sequestered active site and solvent and a flavin that adopts two positions: "in", where the flavin is near pOHB, and "out", where the flavin is near NADPH. PHBH uses the proton-transfer network to test for the presence of a suitable aromatic substrate before allowing the flavin to adopt the NADPH-accessible conformation. In this work, kinetic analysis of the His72Asn mutant, with a disrupted proton-transfer network, showed that flavin movement could occur in the presence or absence of NADPH but that NADPH stimulated movement to the reactive conformation required for hydride transfer. Substrate and solvent isotope effects on the transient kinetics of reduction of the His72Asn mutant showed that proton transfer was linked to flavin movement and that the conformational change occurred in a step separate from that of hydride transfer. Proton transfers during the reductive half-reaction were observed directly in the wild-type enzyme by performing experiments in the presence of a fluorescent pH-indicator dye in unbuffered solutions. NADPH binding caused rapid proton release from the enzyme, followed by proton uptake after flavin reduction. Solvent and substrate kinetic isotope effects showed that proton-coupled flavin movement and reduction also occurred in different steps in wild-type PHBH. These results allow a detailed kinetic scheme to be proposed for the reductive half-reaction of the wild-type enzyme. Three kinetic models considered for substrate-induced isomerization are analyzed in the Appendix. 相似文献
9.
Oxidation-induced conformational changes in proteins provide a powerful mechanism to sense the redox state of a living cell. In contrast to the unspecific and often irreversible oxidation of intracellular proteins during severe oxidative stress, regulatory redox events need to have specific and transient effects on cellular targets. Here we present evidence for the reversible formation of a vicinal disulfide bond in a prototypic protein interaction domain. NMR spectroscopy was used to determine the structure of the N-terminal hSH3 domain (hSH3N) of the immune cell protein ADAP (adhesion and degranulation promoting adapter protein) in the reduced and oxidized states. An eight-membered ring formed upon oxidation of two neighboring cysteines leads to significant changes in the variable arginine-threonine (RT) loop of the hSH3N domain and alters the helix-sheet packing of the domain. The redox potential for this structural transition is -228 mV at pH 7.4. This is compatible with a role of the cysteinylcysteine moiety in redox signaling during T cell activation. 相似文献
10.
Hilge M Siegal G Vuister GW Güntert P Gloor SM Abrahams JP 《Nature structural biology》2003,10(6):468-474
The Na,K-ATPase hydrolyzes ATP to drive the coupled extrusion and uptake of Na+ and K+ ions across the plasma membrane. Here, we report two high-resolution NMR structures of the 213-residue nucleotide-binding domain of rat alpha1 Na,K-ATPase, determined in the absence and the presence of ATP. The nucleotide binds in the anti conformation and shows a relative paucity of interactions with the protein, reflecting the low-affinity ATP-binding state. Binding of ATP induces substantial conformational changes in the binding pocket and in residues located in the hinge region connecting the N- and P-domains. Structural comparison with the Ca-ATPase stabilized by the inhibitor thapsigargin, E2(TG), and the model of the H-ATPase in the E1 form suggests that the observed changes may trigger the series of events necessary for the release of the K+ ions and/or disengagement of the A-domain, leading to the eventual transfer of the gamma-phosphate group to the invariant Asp369. 相似文献
11.
Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain 总被引:1,自引:0,他引:1
Zhang F Marcus WD Goyal NH Selvaraj P Springer TA Zhu C 《The Journal of biological chemistry》2005,280(51):42207-42218
The leukocyte integrin alphaLbeta2 mediates cell adhesion and migration during inflammatory and immune responses. Ligand binding of alphaLbeta2 is regulated by or induces conformational changes in the inserted (I) domain. By using a micropipette, we measured the conformational regulation of two-dimensional (2D) binding affinity and the kinetics of cell-bound intercellular adhesion molecule-1 interacting with alphaLbeta2 or isolated I domain expressed on K562 cells. Locking the I domain into open and intermediate conformations with a disulfide bond increased the affinities by approximately 8000- and approximately 30-fold, respectively, from the locked closed conformation, which has similar affinity as the wild-type I domain. Most surprisingly, the 2D affinity increases were due mostly to the 2D on-rate increases, as the 2D off-rates only decreased by severalfold. The wild-type alphaLbeta2, but not its I domain in isolation, could be up-regulated by Mn2+ or Mg2+ to have high affinities and on-rates. Locking the I domain in any of the three conformations abolished the ability of divalent cations to regulate 2D affinity. These results indicate that a downward displacement of the I domain C-terminal helix, induced by conformational changes of other domains of the alphaLbeta2, is required for affinity and on-rate up-regulation. 相似文献
12.
R Dieckmann M Pavela-Vrancic H von D?hren H Kleinkauf 《Journal of molecular biology》1999,288(1):129-140
The boundaries of the structural domains in peptide synthetases and the conformational changes related to catalysis were investigated by limited proteolysis of tyrocidine synthetase 1 (TY1). Four regions sensitive to proteolysis were detected (cleavage site at Arg13, Arg424, Arg509 and Arg602) that, in addition to an N-terminal extension, accurately delineate the domain boundaries of the adenylate-forming domain, the aminoacyl carrier domain, and the epimerisation domain. Limited proteolysis of an active N-terminal truncated deletion mutant, His6DeltaTY1, generated two stable and structurally independent subunits, corresponding to the subdomains of the adenylation domain. The structural integrity of the carrier domain was substantiated by its resistance to proteolytic degradation. Evidence is provided that the C-terminal "spacer" region with epimerising and/or condensing activity folds into an autonomous domain stable against degradation by limited proteoly sis. In the presence of substrates, reduced susceptibility to proteolysis was observed in the linker region connecting the subdomains of the adenylation domain, and corresponding to a peptide stretch of low electron density in the X-ray structure of the homologous firefly luciferase. Sequence analysis has shown that the respective linker contains conserved residues, whereas the linker regions connecting the structural domains are of low homology with a significant content of Pro, Ala, Glu and polar residues. A combination of kinetic and proteolytic studies using ATP analogues with substitutions in the phosphate chain, AMP-PcP, AMP-PNP and AMP-cPP, strongly suggests that the generation of a productive complex is associated with the ability of the beta, gamma-pyrophosphate moiety of ATP to adopt the proper active-site conformation. These data substantiate the observation that peptide synthetases undergo a series of conformational changes in the process of adenylate formation and product release. 相似文献
13.
The conformation of bacterioopsin in the apomembrane has been studied by Fourier transform infrared spectroscopy. Resolution enhancement techniques and curve-fitting procedures have been used to determine the secondary structural components from the amide I region. Bacterioopsin contains about 54% helicoidal structure (alpha I and alpha II helices + 3(10) turns), 21% sheets, 16% reverse turns, and 9% unordered structure. Thus, after retinal removal, all of the secondary structural types of bacteriorhodopsin remain present, and only slight quantitative differences appear. On the other hand, H/D exchange studies show that there is a higher degree of exchange for reverse turns and protonated carboxylic lateral chains in bacterioopsin as compared to bacteriorhodopsin. This gives further support to the idea of a more open tertiary structure of bacterioopsin, and to the consideration of the retinal molecule as an important element in complementing the interhelical interactions in bacteriorhodopsin folding. 相似文献
14.
Human plasminogen catalytic domain undergoes an unusual conformational change upon activation 总被引:3,自引:0,他引:3
Activation of the serine protease plasmin from its zymogen, plasminogen, is the key step in fibrinolysis leading to blood clot dissolution. It also plays critical roles in cell migration, such as in tumor metastasis. Here, we report the crystal structure of an inactive S741A mutant of human plasminogen catalytic domain at 2.0 A resolution. This structure permits a direct comparison with that of the plasmin catalytic unit. Unique conformational differences are present between these two structures that are not seen in other zymogen-enzyme pairs of the trypsin family. The functional significance of these differences and the structural basis of plasminogen activation is discussed in the light of this new structure. 相似文献
15.
Larson RS Davis T Bologa C Semenuk G Vijayan S Li Y Oprea T Chigaev A Buranda T Wagner CR Sklar LA 《Biochemistry》2005,44(11):4322-4331
LFA-1 (alphalbeta2) is constitutively expressed on leukocytes, but its activity is rapidly regulated. This rapid activation has been proposed to be associated with conformation changes in the inserted ("I") domain within the headpiece of LFA-1 as well as conversion of the molecules from bent to extended forms. To study these molecular changes as they relate to affinity regulation of LFA-1, we developed and synthesized a fluorescent derivative of BIRT-377 [Kelly et al. (2001) J. Immunol.] to examine changes in LFA-1 affinity in a flow cytometer with live cells. BIRT-377 binds to the ligand-binding or "I" domain of LFA-1. Structure-activity relationships studies indicated that an aminoalkyl group could be added to the central hydantoin group without significantly affecting binding. Using this modified derivative [1-(N-fluoresceinylthioureidobutyl)-[5R]-(4-bromobenzyl)-3-(3,5-dichlorophenyl)-5-methyl-imidazolidine-2,4-dione (FBABIRT)], we analyzed the affinity of FBABIRT binding to LFA-1 on live cells. The binding affinity increases, and the dissociation rate decreases with divalent cation (Mn(2+)) stimulation. We then used FBABIRT with fluorescent resonance energy transfer (FRET) to show that LFA-1 changes its height relative to the cell surface when cells were treated with dithiothreitol (DTT) but not Mn(2+). Competition assays among FBABIRT and BIRT derivatives defined structure-affinity relationships that refine the current model of BIRT-377 binding to the I domain. Our data supports the model in which BIRT-377 binds to the I domain and stabilizes the bent structure of LFA-1, while divalent cation activation results in a small conformational change in the I domain without significant extension of LFA-1. DTT, in contrast, induces a conversion to the extended form of LFA-1 in the presence of BIRT-377 on live cells. The structure-activity studies suggest that BIRT-377 is a fully optimized inhibitor. 相似文献
16.
《FEBS letters》2014,588(23):4478-4486
The class II lysyl-tRNA synthetases (KRS) are conserved aminoacyl-tRNA synthetases that attach lysine to the cognate tRNA in a two-step mechanism. The enzyme from the parasitic protozoan Entamoeba histolytica was crystallized in the presence of small ligands to generate snapshots of the lysine-adenylate formation. The residues involved in lysine activation are highly conserved and the active site closes around the lysyl-adenylate, as observed in bacterial KRS. The Entamoeba EMAPII-like polypeptide is not resolved in the crystals, but another Entamoeba-specific insertion could be modeled as a small helix bundle that may contribute to tRNA binding through interaction with the tRNA hinge. 相似文献
17.
The analogy, in both the thermodynamics and the kinetics, of reversible polymerizations on templates (in the case wherein these are catalyzed by exoenzymes) to helix–coil transitions (in the case where these proceed only from one end of each macromolecular chain) is presented. A suggestion, based on this analogy, is made concerning the possible nature of biological control of synthesis of macromolecules (enzyme induction and repression). The equations governing the kinetics of these one-dimensional cooperative processes are presented and their solutions discussed. 相似文献
18.
Copper-induced conformational changes in the N-terminal domain of the Wilson disease copper-transporting ATPase 总被引:4,自引:0,他引:4
The Wilson disease copper-transporting ATPase plays a critical role in the intracellular trafficking of copper. Mutations in this protein lead to the accumulation of a toxic level of copper in the liver, kidney, and brain followed by extensive tissue damage and death. The ATPase has a novel amino-terminal domain ( approximately 70 kDa) which contains six repeats of the copper binding motif GMTCXXC. We have expressed and characterized this domain with respect to the copper binding sites and the conformational consequences of copper binding. A detailed analysis of this domain by X-ray absorption spectroscopy (XAS) has revealed that each binding site ligates copper in the +1 oxidation state using two cysteine side chains with distorted linear geometry. Analysis of copper-induced conformational changes in the amino-terminal domain indicates that both secondary and tertiary structure changes take place upon copper binding. These copper-induced conformational changes could play an important role in the function and regulation of the ATPase in vivo. In addition to providing important insights on copper binding to the protein, these results suggest a possible mechanism of copper trafficking by the Wilson disease ATPase. 相似文献
19.
Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy 总被引:1,自引:0,他引:1
Flavin-binding Kelch repeat F-box (FKF1) protein plays important roles in the photoregulation of flowering in Arabidopsis. FKF1 has a light, oxygen, and voltage (LOV) sensing domain binding a flavin mononucleotide (FMN) as a chromophore noncovalently. Photoreaction of the FKF1-LOV polypeptide was studied by low-temperature absorption spectroscopy. Upon blue light irradiation, a ground state, D(450), is converted to S(390) known as a cysteinyl-flavin adduct intermediate in the photoreaction of phototropin. Below 150 K, bleaching of D(450) was much reduced and a new photoproduct, Z(370), appeared as well as S(390) formation. The calculated absorption spectrum for Z(370) is very similar to those of flavoproteins in an anion radical state. On the basis of the results that S(390) formation proceeds to Z(370) formation and that Z(370) formed at low temperatures reverts to D(450) upon temperature increase, Z(370) is concluded to be not an intermediate from D(450) to S(390). Z(370) is suggested to be formed from the biradical triplet-excited state after relaxing to the ground state with the FMN anion radical trapped at the low temperature, in which the SH of the cysteine is in the wrong position that is able to produce a radical pair but unable to form the cysteinyl-flavin adduct. The counter SH in the cationic radical state may revert to the ground state by extracting an electron from the unidentified amino acid residue. Interestingly, S(390) that has been thought to be irreversible to D(450) was revealed to revert to D(450) very slowly with a half-life time of 62.5 h in solution at 298 K. The photoreaction mechanism is discussed in reference to the calculated activation energy of the reaction processes. 相似文献
20.
Kinetics of the low pH-induced conformational changes and fusogenic activity of influenza hemagglutinin. 总被引:3,自引:0,他引:3
下载免费PDF全文

The decrease of the intrinsic tryptophan fluorescence intensity of purified influenza (X31 strain) hemagglutinin (HA) was used to monitor the low pH-induced conformational change of this protein. The kinetics of the fluorescence decrease depended strongly on the pH. At pH optimal for fusion, the change in tryptophan fluorescence was fast and could be fitted to a monoexponential function. We measured a rate constant of 5.78 s-1 (t1/2 = 120 ms) at pH 4.9 using rapid stopped-flow mixing. Under suboptimal conditions (higher pH), the rate constant was decreased by an order of magnitude. In addition, a slow component appeared and the fluorescence decrease followed a sum of two exponentials. The kinetics of conformational changes were compared with those of the fusion of influenza virus with red blood cell membranes as assessed by the R18-dequenching assay. At optimal pH the HA conformational change was not rate-limiting for the fusion process. However, at sub-optimal pH, the slow transition to the fusogenic conformational of HA resulted in slower kinetics and decreased extent of fusion. 相似文献