首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we isolated tautomycetin, TC, and examined its phosphatase inhibitory activity. Recently we have reported that the left-hand moiety of tautomycin, TM, and the right one containing the spiroketal are essentially required for inhibition of protein phosphatase, PP, and induction of apoptosis, respectively. TC is structurally almost identical to TM except that TC is lacking the spiroketal, which has the potential apoptosis-inducing activity. TC specifically inhibited PP1 activity, IC50 values for purified PP1 and PP2A enzymes being 1.6 and 62 nM, respectively, whereas the IC50 values of TM were 0.21 and 0.94 nM, respectively. These results demonstrate that TC is the most specific PP1 inhibitor out of over 40 species of natural phosphatase inhibitors reported, strongly suggesting that TC is a novel powerful tool to elucidate the physiological roles of PP1 in various biological events.  相似文献   

2.
The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.  相似文献   

3.
Two leucine aminopeptidase M inhibitors, cyanostatin A and B, were isolated from cyanobacterial water blooms at Loch Rescobie in Scotland, and specifically from a Microcystis species. Both inhibitors were lipopeptides containing 3-amino-2-hydroxydecanoic acid and weak inhibitors of protein phosphatase (PP2A). Both strongly inhibited the activity of leucine aminopeptidase M with IC50 values of 40 and 12 ng/ml, respectively.  相似文献   

4.
Shirato H  Shima H  Sakashita G  Nakano T  Ito M  Lee EY  Kikuchi K 《Biochemistry》2000,39(45):13848-13855
We have isolated human cDNA for a novel type 1 protein phosphatase (PP1) inhibitory protein, named inhibitor-4 (I-4), from a cDNA library of germ cell tumors. I-4, composed of 202 amino acids, is 44% identical to a PP1 inhibitor, inhibitor-2 (I-2). I-4 conserves functionally important structure of I-2 and exhibited similar biochemical properties. I-4 inhibited activity of the catalytic subunit of PP1 (PP1C), specifically with an IC(50) of 0.2 nM, more potently than I-2 with an IC(50) of 2 nM. I-4 weakly inhibited the activity of myosin-associated phosphates (PP1M). However, the level of inhibition of PP1M was increased during preincubation of PP1M with I-4, suggesting that the inhibition is caused by interaction of I-4 with PP1C in such a manner that it competes with the M subunit of PP1M. Gel overlay experiments showed that I-4 binds PP1C directly. Three I-4 peptides containing the N-terminal residues 1-123, 1-131, and 1-142 all showed strong binding ability to PP1C but did not show PP1 inhibitory activity, whereas an I-2 peptide (residues 1-134), lacking the corresponding C-terminal residues, potently inhibited PP1C activity as previously reported. Removal of the 18 N-terminal amino acid residues from I-4 dramatically reduced the PP1 binding activity with a correlated loss of inhibitory activity, whereas removal of the 10 N-terminal residues had only a little effect. The two peptides GST-I-4(19-131) and GST-I-4(132-202) showed ability to bind to PP1C, albeit very weakly. These results strongly suggest a multiple-point interaction between I-4 and PP1C, which is thought to cause the inhibition of I-4 which is stronger than the inhibition of I-2.  相似文献   

5.
Protein phosphatases play key roles in cellular regulation and are subjected to control by protein inhibitors whose activity is in turn regulated by phosphorylation. Here we investigated the possible regulation of phosphorylation-dependent type-1 protein phosphatase (PP1) inhibitors, CPI-17, PHI-1, and KEPI, by various kinases. Protein kinases A (PKA) and G (PKG) phosphorylated CPI-17 at the inhibitory site (T38), but not PHI-1 (T57). Phosphorylated CPI-17 inhibited the activity of both the PP1 catalytic subunit (PP1c) and the myosin phosphatase holoenzyme (MPH) with IC(50) values of 1-8 nM. PKA predominantly phosphorylated a site distinct from the inhibitory T73 in KEPI, whereas PKG was ineffective. Integrin-linked kinase phosphorylated KEPI (T73) and this dramatically increased inhibition of PP1c (IC(50)=0.1 nM) and MPH (IC(50)=8 nM). These results suggest that the regulatory phosphorylation of CPI-17 and KEPI may involve distinct kinases and signaling pathways.  相似文献   

6.
Sustained nigrostriatal dopamine depletion increases the serine/threonine phosphorylation of multiple striatal proteins that play a role in corticostriatal synaptic plasticity, including Thr(286) phosphorylation of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha). Mechanisms underlying these changes are unclear, but protein phosphatases play a critical role in the acute modulation of striatal protein phosphorylation. Here we show that dopamine depletion for periods ranging from 3 weeks to 10 months significantly reduces the total activity of protein phosphatase (PP) 1, but not of PP2A, in whole lysates of rat striatum, as measured using multiple substrates, including Thr(286)-autophosphorylated CaMKIIalpha. Striatal PP1 activity is partially inhibited by a fragment of the PP1-binding protein neurabin-I, Nb-(146-493), because of the selective inhibition of the PP1gamma(1) isoform. The fraction of PP1 activity that is insensitive to Nb-(146-493) was unaffected by dopamine depletion, demonstrating that dopamine depletion specifically reduces the activity of PP1 isoforms that are sensitive to Nb-(146-493) (i.e. PP1gamma(1)). However, total striatal levels of PP1gamma(1) or any other PP1 isoform were unaffected by dopamine depletion, and our previous studies showed that total levels of the PP1 regulatory/targeting proteins DARPP-32, spinophilin, and neurabin were also unchanged. Rather, co-immunoprecipitation experiments demonstrated that dopamine depletion increases the association of PP1gamma(1) with spinophilin in striatal extracts. In combination, these data demonstrate that striatal dopamine depletion inhibits a specific synaptic phosphatase by increasing PP1gamma(1) interaction with spinophilin, perhaps contributing to hyperphosphorylation of synaptic proteins and disruptions of synaptic plasticity and/or dendritic morphology.  相似文献   

7.
The Arabidopsis thaliana type 1 protein phosphatase (PP1) catalytic subunit was released from its endogenous regulatory subunits by ethanol precipitation and purified by anion exchange and microcystin affinity chromatography. The enzyme was identified by MALDI-TOF mass spectrometry from a tryptic digest of the purified protein as a mixture of PP1 isoforms (TOPP 1-6) indicating that at least 4-6 of the eight known PP1 proteins are expressed in sufficient quantities for purification from A. thaliana suspension cells. The enzyme had a final specific activity of 8950 mU/mg using glycogen phosphorylase a as substrate, had a subunit molecular mass of 35 kDa as determined by SDS-PAGE and behaved as a monomeric protein of approx. 39 kDa on Superose 12 gel filtration chromatography. Similar to the mammalian type 1 protein phosphatases, the A. thaliana enzyme was potently inhibited by Inhibitor-2 (IC(50)=0.65 nM), tautomycin (IC(50)=0.06 nM), microcystin-LR (IC(50)=0.01 nM), nodularin (IC(50)=0.035 nM), calyculin A (IC(50)=0.09 nM), okadaic acid (IC(50)=20 nM) and cantharidin (IC(50)=60 nM). The enzyme was also inhibited by fostriecin (IC(50)=22 microM), NaF (IC(50)=2.1 mM), Pi (IC(50)=9.5 mM), and PPi (IC(50)=0.07 mM). Purification of the free catalytic subunit allowed it to be used to probe protein phosphatase holoenzyme complexes that were enriched on Q-Sepharose and a microcystin-Sepharose affinity matrix and confirmed several proteins to be PP1 targeting subunits.  相似文献   

8.
In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP-dependent protein kinase (A kinase), Ca2+/calmodulin-dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca2+/phospholipid-dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise.  相似文献   

9.
Cytostatin, which is isolated from a microbial cultured broth as a low molecular weight inhibitor of cell adhesion to extracellular matrix (ECM), has anti-metastatic activity against B16 melanoma cells in vivo. In this study, we examined a target of cytostatin inhibiting cell adhesion to ECM. Cytostatin inhibited tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin upon B16 cell adhesion to fibronectin. While the amount of FAK was not affected by cytostatin, electrophoretically slow-migrating paxillin appeared. Alkaline phosphatase treatment diminished cytostatin-induced slow-migrating paxillin. Furthermore, cytostatin increased intracellular serine/threonine-phosphorylated proteins and was found to be a selective inhibitor of protein phosphatase 2A (PP2A). Cytostatin inhibited PP2A with an IC(50) of 0.09 microgram/ml in a non-competitive manner against a substrate, p-nitrophenyl phosphate, but it had no apparent effect on other protein phosphatases including PP1, PP2B and alkaline phosphatase even at 100 microgram/ml. On the contrary, dephosphocytostatin, a cytostatin analogue, without inhibitory effect on PP2A did not affect B16 cell adhesion including FAK and paxillin. These results indicate that cytostatin inhibits cell adhesion through modification of focal contact proteins such as paxillin by inhibiting a PP2A type protein serine/threonine phosphatase. This is the first report that describes a drug with anti-metastatic ability that inhibits PP2A selectively.  相似文献   

10.
Type 1 protein phosphatase (PP1) is a negative regulator of cardiac function. However, studies on the status and regulation of sarcoplasmic reticulum (SR)-associated PP1 activity in failing hearts are limited. We studied PP1 activity and protein and mRNA expression of the catalytic subunit of PP1 (PP1C) and protein levels of PP1-specific inhibitors [inhibitor 1 (Inh-1) and inhibitor 2 (Inh-2)] in the left ventricular (LV) myocardium of 6 dogs with heart failure (HF; LV ejection fraction, 23 +/- 2%) and 6 normal dogs. In failing LV tissue, PP1 activity values (expressed as pmol 32P. min-1. mg of noncollagen protein-1) in the homogenate, crude membranes, cytosol, and purified SR were increased by 52, 54, 55, and 72%, respectively. Trypsin treatment released PP1 but not type 2A protein phosphatase from the SR. In the supernatant of trypsin-treated SR, PP1 activity was approximately 24% higher in failing hearts than in normal control hearts. A similar increase in protein expression of PP1C was observed in the nontrypsinized SR. Heat-denatured phosphorylated SR inhibited PP1 activity by 30%, which suggests the presence of Inh-1 or -2 or both in the SR. With the use of a specific antibody, both Inh-1 and -2 proteins were found in the SR; the former was decreased by 56% in the failing SR, whereas the latter did not change. These results suggest that protein phosphatase activity bound to the SR is increased and is predominantly type 1. Increased SR-associated PP1 activity in failing hearts appears to be due partly to increased expression of PP1C and partly to reduced levels of Inh-1 but not Inh-2 protein. Thus inhibition of PP1 activity in the SR appears to be a potential therapeutic target for improving LV function in failing hearts, because it may lead to increased SR Ca2+ uptake, which is impaired in failing hearts.  相似文献   

11.
The regulation of protein phosphatase 2A (PP2A) activity by thiol-disulfide exchange and resulting formation of an intermolecular disulfide was examined following exposure of a rat brain soluble fraction to a biotinylated derivative of the model disulfide HPDP (HPDP-biotin) which would be expected to label reactive protein thiols with a disulfide-linked biotin. The results show that a low concentration (500 microM) of HPDP-biotin produced substantial inhibition of PP2A activity and promoted the binding of the catalytic subunit of PP2A to an immobilized avidin-affinity column. Both the inhibition of PP2A activity and the binding of PP2A to the avidin column were reversed by treatment with the disulfide reducing agent dithiothreitol (DTT). Furthermore, the specific activity of PP2A was up to 7-fold higher in the DTT-eluted fractions from the avidin-affinity column than in the soluble fraction. These findings demonstrate directly that PP2A is susceptible to reversible inhibitory modification by thiol-disulfide exchange and provide mechanistic support for the emerging view that PP2A is an oxidant-sensitive protein phosphatase.  相似文献   

12.
The specific activity of K+-dependent p-NPPase (paranitrophenylphosphatase) from frog (Rana ridibunda) epidermis microsomal preparation was determined. The activity was proportional to time of incubation and protein concentrations under our assays conditions. Optimal phosphatase activity was at pH from 8 to 9 and over 35 degrees C. 10(-3) M ouabain inhibited 100% of the activity and the Ki was estimated about 5 X 10(-5) M. The Km for p-NPP was 3.8 mM and 2.1 for K+. The lectins GSI and GSII produced 80-90% of non-competitive inhibition of the activity. 50% of inhibition by GSI was obtained at 2 micrograms/ml. The Km for p-NPP did not change but the Vmax of activity was clearly reduced for both GSI and GSII lectins.  相似文献   

13.
Le AV  Tavalin SJ  Dodge-Kafka KL 《Biochemistry》2011,50(23):5279-5291
The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.  相似文献   

14.
AIM: To identify novel microbial inhibitors of protein phosphatase 1 (PP1). METHODS AND RESULTS: 750 actinomycetes and 408 microfungi were isolated from Sabah forest soils and screened for production of potential PP1 inhibitors using an in vivo screening system, in which candidate inhibitors were identified through mimicking the properties of PP1-deficient yeast cells. Acetone extracts of two fungi, H9318 (Penicillium) and H9978 (non-Penicillium) identified in this way showed inhibitory activity towards both mammalian PP1 and PP2A in an in vitro phosphatase assay, while extract from H7520 (Streptomyces) inhibited PP2A but not PP1. Consistently, using a drug-induced haploinsufficiency test, strains with either reduced PP1 or PP2A function were hypersensitive to H9318 and H9978 extracts whereas only the latter strain showed hypersensitivity to H7250 extract. H9318 extract was fractionated using RP-HPLC into two active peaks (S1 and S2). A yeast strain with reduced PP1 function showed hypersensitivity to fraction S2 whereas a strain with reduced PP2A function was hypersensitive to fraction S1. However, S1 and S2 inhibited both PP1 and PP2A activities to a similar extent. CONCLUSION: Three candidate PP inhibitors have been identified. SIGNIFICANCE AND IMPACT OF THE STUDY: Further development may generate useful research tools and ultimately therapeutic agents.  相似文献   

15.
Protein phosphatase type 1 (PP1), together with protein phosphatase 2A (PP2A), is a major eukaryotic serine/threonine protein phosphatase involved in regulation of numerous cell functions. Although the roles of PP2A have been studied extensively using okadaic acid, a well known inhibitor of PP2A, biological analysis of PP1 has remained restricted because of lack of a specific inhibitor. Recently we reported that tautomycetin (TC) is a highly specific inhibitor of PP1. To elucidate the biological effects of TC, we demonstrated in preliminary experiments that treatment of COS-7 cells with 5 microm TC for 5 h inhibits endogenous PP1 by more than 90% without affecting PP2A activity. Therefore, using TC as a specific PP1 inhibitor, the biological effect of PP1 on MAPK signaling was examined. First, we found that inhibition of PP1 in COS-7 cells by TC specifically suppresses activation of ERK, among three MAPK kinases (ERK, JNK, and p38). TC-mediated inhibition of PP1 also suppressed activation of Raf-1, resulting in the inactivation of the MEK-ERK pathway. To examine the role of PP1 in regulation of Raf-1, we overexpressed the PP1 catalytic subunit (PP1C) in COS-7 cells and found that PP1C enhanced activation of Raf-1 activity, whereas phosphatase-dead PP1C blocked Raf-1 activation. Furthermore, a physical interaction between PP1C and Raf-1 was also observed. These data strongly suggest that PP1 positively regulates Raf-1 in vivo.  相似文献   

16.
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.  相似文献   

17.
The ability of adenosine A(1) receptors to activate type 2a protein phosphatase (PP2a) and account for antiadrenergic effects was investigated in rat myocardial preparations. We observed that the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) significantly reduces the isoproterenol-induced increase in left ventricular developed pressure of isolated heats, and this effect is blocked by pretreatment of hearts with the PP2a inhibitor cantharidin. CPA alone or given in conjunction with isoproterenol stimulation decreases phosphorylation of phospholamban and troponin I in ventricular myocytes. These dephosphorylations are blocked by an adenosine A(1) receptor antagonist and by PP2a inhibition with okadaic acid. Adenosine A(1) receptor activation was also shown to increase carboxymethylation of the PP2a catalytic subunit (PP2a-C) and cause translocation of PP2a-C to the particulate fraction in ventricular myocytes. These results support the hypothesis that adenosine A(1) receptor activation leads to methylation of PP2a-C and subsequent translocation of the PP2a holoenzyme. Increases in localized PP2a activity lead to dephosphorylation of key cardiac proteins responsible for the positive inotropic effects of beta-adrenergic stimulation.  相似文献   

18.
A major "non-receptor" phosphotyrosine-specific protein phosphatase isolated from the 30,000g pellet fraction of porcine spleen is related to the human T-cell tyrosine phosphatase (Cool et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5257-5261) and is strongly inhibited by micromolar concentrations of phosphatidyl inositol (IC50 6 microM) and phosphatidyl serine (IC50 3.7 microM). In addition, the enzyme is inhibited by myo-inositol 1,4,5-trisphosphate (IC50 ca. 2 microM) in a non-competitive manner but not by myo-inositol hexaphosphate. Since the overall cellular tyrosine phosphatase activity greatly exceeds tyrosine kinase activity, inhibition of the phosphatase may be of importance for the regulation of the extent of tyrosine phosphorylation of cellular proteins.  相似文献   

19.
A molecular basis for the inhibition of brain protein phosphatase 2A (PP2A) activity by oxidative stress was examined in a high-speed supernatant (HSS) fraction from rat cerebral cortex. PP2A activity was subject to substantial disulfide reducing agent-reversible inhibition in the HSS fraction. Results of gel electrophoresis support the conclusions that inhibition of PP2A activity was associated with the both the disulfide cross-linking of the catalytic subunit (PP2AC) of the enzyme to other brain proteins and with the formation of an apparent novel intramolecular disulfide bond in PP2AC. Additional findings that the vicinal dithiol cross-linking reagent phenylarsine oxide (PAO) produced a potent dithiothreitol-reversible inhibition of PP2A activity suggest that the cross-linking of PP2AC vicinal thiols to form an intramolecular disulfide bond may be sufficient to inhibit PP2A activity under oxidative stress. We propose that the dithiol–disulfide equilibrium of a vicinal thiol pair of PP2AC may confer redox sensitivity on cellular PP2A.  相似文献   

20.
We have examined the levels of gene expressions and activities of protein phosphatases, PP1 and PP2A, in rat regenerating livers. PP1 alpha mRNA started to increase from 6 h after partial hepatectomy (PH) and showed two peaks at 12 and 48 h. PP2A mRNA level showed two peaks at 6 and 10-12 h. Protein phosphatase activities were determined both in non-nuclear fraction and in nuclei. While spontaneous PP1 activity in non-nuclear fraction was nearly constant, potential PP1 activity revealed by Co(2+)-trypsin treatment showed a small peak between 7 and 12 h. In nuclei, both spontaneous and potential PP1 activity began to increase from 4-7 h after PH, reached a maximum (about 2.5-fold over control levels) at 12 h, the time which corresponds to the G1 to S transition in the cell cycle, and then declined back to control levels by 7 days. PP2A activity in non-nuclear fraction was nearly constant in both spontaneous and potential forms. PP2A activity in both forms in nuclei was very low throughout. These results suggest the possibility that PP1 in nuclei plays some role in the G1 to S transition in the cell cycle of hepatocyte proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号