首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(7):790-792
Mitochondrial biology has recently emerged as a key regulatory event in Parkinson disease (PD). Notably, defects in the clearance of damaged mitochondria, termed mitophagy, have been recently highlighted as a possible mechanistic explanation for neuronal loss. We have recently identified the mitochondrial rhomboid, termed PARL, as a regulator of the cells mitophagic response. Further, we have identified PD-linked mutations at a functional site in the PARL gene. Here we discuss the benefit of combining molecular genetic and cell biology approaches in understanding human disease.  相似文献   

2.
Many genes associated with familial Parkinson's disease contribute to mitochondrial morphology and function. Some of these genes, for example, Pink1 and Parkin, are part of a common pathway. The presenilin-associated rhomboid-like (PARL) gene was recently linked to familial Parkinson's disease. The PARL gene product is found in the inner mitochondrial membrane and cleaves the optic atrophy 1 protein, involved in mitochondrial morphology and apoptosis. In Drosophila, the PARL-related rhomboid-7 gene acts upstream of pink1 and parkin. However, such a genetic relationship is still unknown in vertebrates. Here, we show that the zebrafish genome comprises two parl paralogs: parla and parlb. Morpholino-mediated loss of parla and/or parlb function resulted in mild neurodegeneration, as evidenced by a lower density of dopaminergic neurons. Patterning of dopaminergic neurons was also perturbed in the ventral diencephalon. Morphants exhibited extensive cell death throughout the entire body as well as increased larval mortality. The morphant phenotype could be rescued by injection of human PARL mRNA, but not catalytically inactive PARL, suggesting functional conservation between the human and zebrafish proteins. More importantly, the zebrafish pink1 mRNA as well as the human PINK1 mRNA, but not kinase-dead nor Parkinson's disease-linked mutant PINK1 mRNA, also rescued the morphant phenotype, providing evidence that Parl genes may function upstream of Pink1, as part of a conserved pathway in vertebrates.  相似文献   

3.
Mutations in PINK1 and PARK2/Parkin are a main risk factor for familial Parkinson disease. While the physiological mechanism of their activation is unclear, these proteins have been shown in tissue culture cells to serve as a key trigger for autophagy of depolarized mitochondria. Here we show that ablation of the mitochondrial rhomboid protease PARL leads to retrograde translocation of an intermembrane space-bridging PINK1 import intermediate. Subsequently, it is rerouted to the outer membrane in order to recruit PARK2, which phenocopies mitophagy induction by uncoupling agents. Consistent with a role of this retrograde translocation mechanism in neurodegenerative disease, we show that pathogenic PINK1 mutants which are not cleaved by PARL affect PINK1 kinase activity and the ability to induce PARK2-mediated mitophagy. Altogether we suggest that PARL is an important intrinsic player in mitochondrial quality control, a system substantially impaired in Parkinson disease as indicated by reduced removal of damaged mitochondria in affected patients.  相似文献   

4.
5.
Nucleolin is a major nucleolar protein implicated in many aspects of ribosomal biogenesis, including early events such as processing of the large 35S preribosomal RNA. We found that the Arabidopsis (Arabidopsis thaliana) parallel1 (parl1) mutant, originally identified by its aberrant leaf venation, corresponds to the Arabidopsis nucleolin gene. parl1 mutants display parallel leaf venation, aberrant localization of the provascular marker Athb8:beta-glucuronidase, the auxin-sensitive reporter DR5:beta-glucuronidase, and auxin-dependent growth defects. PARL1 is highly similar to the yeast (Saccharomyces cerevisiae) nucleolin NUCLEAR SIGNAL RECOGNITION 1 (NSR1) multifunctional protein; the Arabidopsis PARL1 gene can rescue growth defects of yeast nsr1 null mutants. This suggests that PARL1 protein may have roles similar to those of the yeast nucleolin in nuclear signal recognition, ribosomal processing, and ribosomal subunit accumulation. Based on the range of auxin-related defects in parl1 mutants, we propose that auxin-dependent organ growth and patterning is highly sensitive to the efficiency of nucleolin-dependent ribosomal processing.  相似文献   

6.
7.
Regulated intramembrane proteolysis is a widely conserved mechanism for controlling diverse biological processes. Considering that proteolysis is irreversible, it must be precisely regulated in a context-dependent manner. Here, we show that phosphoglycerate mutase 5 (PGAM5), a mitochondrial Ser/Thr protein phosphatase, is cleaved in its N-terminal transmembrane domain in response to mitochondrial membrane potential (ΔΨm) loss. This ΔΨm loss-dependent cleavage of PGAM5 was mediated by presenilin-associated rhomboid-like (PARL). PARL is a mitochondrial resident rhomboid serine protease and has recently been reported to mediate the cleavage of PINK1, a mitochondrial Ser/Thr protein kinase, in healthy mitochondria with intact ΔΨm. Intriguingly, we found that PARL dissociated from PINK1 and reciprocally associated with PGAM5 in response to ΔΨm loss. These results suggest that PARL mediates differential cleavage of PINK1 and PGAM5 depending on the health status of mitochondria. Our data provide a prototypical example of stress-dependent regulation of PARL-mediated regulated intramembrane proteolysis.  相似文献   

8.
Mitochondrial fusion and fission in cell life and death   总被引:1,自引:0,他引:1  
Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.  相似文献   

9.
Paola Martinelli 《BBA》2010,1797(1):1-10
Fine tuning of integrated mitochondrial functions is essential in neurons and rationalizes why mitochondrial dysfunction plays an important pathogenic role in neurodegeneration. Mitochondria can contribute to neuronal cell death and axonal dysfunction through a plethora of mechanisms, including low ATP levels, increased reactive oxygen species, defective calcium regulation, and impairment of dynamics and transport. Recently, mitochondrial proteases in the inner mitochondrial membrane have emerged as culprits in several human neurodegenerative diseases. Mitochondrial proteases degrade misfolded and non-assembled polypeptides, thus performing quality control surveillance in the organelle. Moreover, they regulate the activity of specific substrates by mediating essential processing steps. Mitochondrial proteases may be directly involved in neurodegenerative diseases, as recently shown for the m-AAA protease, or may regulate crucial mitochondrial molecules, such as OPA1, which in turn is implicated in human disease. The mitochondrial proteases HTRA2 and PARL increase the susceptibility of neurons to apoptotic cell death. Here we review our current knowledge on how disturbances of the mitochondrial proteolytic system affect neuronal maintenance and axonal function.  相似文献   

10.
Intramembrane‐cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain‐containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL‐mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL. On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.  相似文献   

11.
Regulated intramembrane proteolysis (RIP) is an emerging paradigm in signal transduction. RIP is mediated by intramembrane-cleaving proteases (I-CliPs), which liberate biologically active nuclear or secreted domains from their membrane-tethered precursor proteins. The yeast Pcp1p/Rbd1p protein is a Rhomboid-like I-CliP that regulates mitochondrial membrane remodeling and fusion through cleavage of Mgm1p, a regulator of these essential activities. Although this ancient function is conserved in PARL (Presenilins-associated Rhomboid-like protein), the mammalian ortholog of Pcp1p/Rbd1p, the two proteins show a strong divergence at their N termini. However, the N terminus of PARL is significantly conserved among vertebrates, particularly among mammals, suggesting that this domain evolved a distinct but still unknown function. Here, we show that the cytosolic N-terminal domain of PARL is cleaved at positions 52-53 (alpha-site) and 77-78 (beta-site). Whereas alpha-cleavage is constitutive and removes the mitochondrial targeting sequence, beta-cleavage appears to be developmentally controlled and dependent on PARL I-CliP activity supplied in trans. The beta-cleavage of PARL liberates Pbeta, a nuclear targeted peptide whose sequence is conserved only in mammals. Thus, in addition to its evolutionarily conserved function in regulating mitochondrial dynamics, PARL might mediate a mammalian-specific, developmentally regulated mitochondria-to-nuclei signaling through regulated proteolysis of its N terminus and release of the Pbeta peptide.  相似文献   

12.
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function.  相似文献   

13.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint' of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated from different samples. Here, we explore the utility of these methods by applying them to the identification of members of the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring‐like structures and locally specify the protein–lipid composition in a variety of cellular membranes. Stomatin‐like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i‐AAA protease YME1L, which we term the SPY complex (for SLP2–PARL–YME1L). Association with SLP2 in the SPY complex regulates PARL‐mediated processing of PTEN‐induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress‐activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1‐mediated processing of the dynamin‐like GTPase OPA1 allowing stress‐induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.  相似文献   

15.
Bornaviruses are the only animal RNA viruses that establish a persistent infection in their host cell nucleus. Studies of bornaviruses have provided unique information about viral replication strategies and virus–host interactions. Although bornaviruses do not integrate into the host genome during their replication cycle, we and others have recently reported that there are DNA sequences derived from the mRNAs of ancient bornaviruses in the genomes of vertebrates, including humans, and these have been designated endogenous borna-like (EBL) elements. Therefore, bornaviruses have been interacting with their hosts as driving forces in the evolution of host genomes in a previously unexpected way. Studies of EBL elements have provided new models for virology, evolutionary biology and general cell biology. In this review, we summarize the data on EBL elements including what we have newly identified in eukaryotes genomes, and discuss the biological significance of EBL elements, with a focus on EBL nucleoprotein elements in mammalian genomes. Surprisingly, EBL elements were detected in the genomes of invertebrates, suggesting that the host range of bornaviruses may be much wider than previously thought. We also review our new data on non-retroviral integration of Borna disease virus.  相似文献   

16.
Tight junctions as targets of infectious agents   总被引:1,自引:0,他引:1  
The epithelial barrier is a critical border that segregates luminal material from entering tissues. Essential components of this epithelial fence are physical intercellular structures termed tight junctions. These junctions use a variety of transmembrane proteins coupled with cytoplasmic adaptors, and the actin cytoskeleton, to attach adjacent cells together thereby forming intercellular seals. Breaching of this barrier has profound effects on human health and disease, as barrier deficiencies have been linked with the onset of inflammation, diarrhea generation and pathogenic effects. Although tight junctions efficiently restrict most microbes from penetrating into deeper tissues and contain the microbiota, some pathogens have developed specific strategies to alter or disrupt these structures as part of their pathogenesis, resulting in either pathogen penetration, or other consequences such as diarrhea. Understanding the strategies that microorganisms use to commandeer the functions of tight junctions is an active area of research in microbial pathogenesis. In this review we highlight and overview the tactics bacteria and viruses use to alter tight junctions during disease. Additionally, these studies have identified novel tight junction protein functions by using pathogens and their virulence factors as tools to study the cell biology of junctional structures.  相似文献   

17.
Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes.  相似文献   

18.
Although the discovery of cilia is one of the earliest in cell biology, the past two decades have witnessed an explosion of new insight into these enigmatic organelles. While long believed to be vestigial, cilia have recently moved into the spotlight as key players in multiple cellular processes, including brain development and homeostasis. This review focuses on the rapidly expanding basic biology of neural cilia, with special emphasis on the newly emerging B9 family of proteins. In particular, recent findings have identified a critical role for the B9 complex in a network of protein interactions that take place at the ciliary transition zone (TZ). We describe the essential role of these protein complexes in signaling cascades that require primary (nonmotile) cilia, including the sonic hedgehog pathway. Loss or dysfunction of ciliary trafficking and TZ function are linked to a number of neurologic diseases, which we propose to classify as neural ciliopathies. When taken together, the studies reviewed herein point to critical roles played by neural cilia, both in normal physiology and in disease.  相似文献   

19.
Alzheimer's disease (AD), the most common age-associated dementing disorder, is pathologically manifested by progressive cognitive dysfunction concomitant with the accumulation of senile plaques consisting of amyloid-β (Aβ) peptide aggregates in the brain of affected individuals. Aβ is derived from a type I transmembrane protein, amyloid precursor protein (APP), by the sequential proteolytic events mediated by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Multiple lines of evidence have implicated cholesterol and cholesterol-rich membrane microdomains, termed lipid rafts in the amyloidogenic processing of APP. In this review, we summarize the cell biology of APP, β- and γ-secretases and the data on their association with lipid rafts. Then, we will discuss potential raft targeting signals identified in the secretases and their importance on amyloidogenic processing of APP.  相似文献   

20.
Ecologists have recently begun to acknowledge the importance of disease and parasites in the dynamics of populations. Diseases and parasites have probably been responsible for a number of extinctions on islands and on large land masses, but the problem has only been identified in retrospect. In contrast, endemic pathogens and parasites may operate as keystone species, playing a crucial role in maintaining the diversity of ecological communities and ecosystems. Will recent advances in the understanding of parasite population biology allow us to predict threats to endangered species and communities?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号