首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes.  相似文献   

2.
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus PSEUDOMONAS: Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.  相似文献   

3.
The widespread presence of antibiotic resistance and virulence among Staphylococcus isolates has been attributed in part to lateral genetic transfer (LGT), but little is known about the broader extent of LGT within this genus. Here we report the first systematic study of the modularity of genetic transfer among 13 Staphylococcus genomes covering four distinct named species. Using a topology-based phylogenetic approach, we found, among 1,354 sets of homologous genes examined, strong evidence of LGT in 368 (27.1%) gene sets, and weaker evidence in another 259 (19.1%). Within-gene and whole-gene transfer contribute almost equally to the topological discordance of these gene sets against a reference phylogeny. Comparing genetic transfer in single-copy and in multicopy gene sets, we observed a higher frequency of LGT in the latter, and a substantial functional bias in cases of whole-gene transfer (little such bias was observed in cases of fragmentary genetic transfer). We found evidence that lateral transfer, particularly of entire genes, impacts not only functions related to antibiotic, drug, and heavy-metal resistance, as well as membrane transport, but also core informational and metabolic functions not associated with mobile elements. Although patterns of sequence similarity support the cohesion of recognized species, LGT within S. aureus appears frequently to disrupt clonal complexes. Our results demonstrate that LGT and gene duplication play important parts in functional innovation in staphylococcal genomes.  相似文献   

4.
In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae . Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.  相似文献   

5.
A fluid genome is a great advantage to prokaryotes, enabling quick adaptation to various types of ecological niches and to diverse environmental selective pressures. A substantial portion of these sudden changes is mediated by lateral gene transfer (LGT), through genetic recombination mechanisms, such as transformation, conjugation and transduction. The recent sequencing of several organisms has offered a new approach to the study of LGT, using comparison and analysis of nucleotide sequences dispersed throughout the genome of these species. This analysis in Choromobacterium violaceum has revealed four prophage and 12 insertion sequences, suggesting genetic exchange with several other bacterial species, including Salmonella enterica, Ralstonia and Xanthomonas. An Rhs (recombination hot spot) element (containing a vgr-like gene) was also observed, the function of which remains unknown, but it has a sequence related to species of Acinetobacter and Sphingomonas. These results support the role of LGT in the acquisition of new traits by C. violaceum.  相似文献   

6.

Background

In prokaryotes and some eukaryotes, genetic material can be transferred laterally among unrelated lineages and recombined into new host genomes, providing metabolic and physiological novelty. Although the process is usually framed in terms of gene sharing (e.g. lateral gene transfer, LGT), there is little reason to imagine that the units of transfer and recombination correspond to entire, intact genes. Proteins often consist of one or more spatially compact structural regions (domains) which may fold autonomously and which, singly or in combination, confer the protein''s specific functions. As LGT is frequent in strongly selective environments and natural selection is based on function, we hypothesized that domains might also serve as modules of genetic transfer, i.e. that regions of DNA that are transferred and recombined between lineages might encode intact structural domains of proteins.

Methodology/Principal Findings

We selected 1,462 orthologous gene sets representing 144 prokaryotic genomes, and applied a rigorous two-stage approach to identify recombination breakpoints within these sequences. Recombination breakpoints are very significantly over-represented in gene sets within which protein domain-encoding regions have been annotated. Within these gene sets, breakpoints significantly avoid the domain-encoding regions (domons), except where these regions constitute most of the sequence length. Recombination breakpoints that fall within longer domons are distributed uniformly at random, but those that fall within shorter domons may show a slight tendency to avoid the domon midpoint. As we find no evidence for differential selection against nucleotide substitutions following the recombination event, any bias against disruption of domains must be a consequence of the recombination event per se.

Conclusions/Significance

This is the first systematic study relating the units of LGT to structural features at the protein level. Many genes have been interrupted by recombination following inter-lineage genetic transfer, during which the regions within these genes that encode protein domains have not been preferentially preserved intact. Protein domains are units of function, but domons are not modules of transfer and recombination. Our results demonstrate that LGT can remodel even the most functionally conservative modules within genomes.  相似文献   

7.
The high frequency of between-strain genetic recombinants of Chlamydia trachomatis among isolates obtained from human sexually transmitted infections suggests that lateral gene transfer (LGT) is an important means by which C. trachomatis generates variants that have enhanced relative fitness. A mechanism for LGT in C. trachomatis has not been described, and investigation of this phenomenon by experimentation has been hampered by the obligate intracellular development of this pathogen. We describe here experiments that readily detected LGT between strains of C. trachomatis in vitro. Host cells were simultaneously infected with an ofloxacin-resistant (Ofxr) mutant of a serovar L1 strain (L1:Ofxr-1) and a rifampin-resistant (Rifr) mutant of a serovar D strain (D:Rifr-1). Development occurred in the absence of antibiotics, and the progeny were subjected to selection for Ofxr Rifr recombinants. The parental strains differed at many polymorphic nucleotide sites, and DNA sequencing was used to map genetic crossovers and to determine the parental sources of DNA segments in 14 recombinants. Depending on the assumed DNA donor, the estimated minimal length of the transferred DNA was ≥123 kb in one recombinant but was ≥336 to ≥790 kb in all other recombinants. Such trans-DNA lengths have been associated only with conjugation in known microbial LGT systems, but natural DNA transformation remains a conceivable mechanism. LGT studies can now be performed with diverse combinations of C. trachomatis strains, and they could have evolutionary interest and yield useful recombinants for functional analysis of allelic differences between strains.  相似文献   

8.
Stable nonviral genetic correction of inherited human skin disease   总被引:17,自引:0,他引:17  
Current gene-transfer technologies display limitations in achieving effective gene delivery. Among these limitations are difficulties in stably integrating large corrective sequences into the genomes of long-lived progenitor-cell populations. Current larger-capacity viral vectors suffer from biosafety concerns, whereas plasmid-based approaches have poor efficiency of stable gene transfer. These barriers hinder genetic correction of many severe inherited human diseases, such as the blistering skin disorder recessive dystrophic epidermolysis bullosa (RDEB), caused by mutations in the large COL7A1 gene. To circumvent these barriers, we used the phi C31 bacteriophage integrase, which stably integrates large DNA sequences containing a specific 285-base-pair attB sequence into genomic 'pseudo-attP sites'. phi C31 integrase-based gene transfer stably integrated the COL7A1 cDNA into genomes of primary epidermal progenitor cells from four unrelated RDEB patients. Skin regenerated using these cells displayed stable correction of hallmark RDEB disease features, including Type VII collagen protein expression, anchoring fibril formation and dermal-epidermal cohesion. These findings establish a practical approach to nonviral genetic correction of severe human genetic disorders requiring stable genomic integration of large DNA sequences.  相似文献   

9.
Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation.  相似文献   

10.
Lateral genetic transfer (LGT) is an important adaptive force in evolution, contributing to metabolic, physiological and ecological innovation in most prokaryotes and some eukaryotes. Genomic sequences and other data have begun to illuminate the processes, mechanisms, quantitative extent and impact of LGT in diverse organisms, populations, taxa and environments; deep questions are being posed, and the provisional answers sometimes challenge existing paradigms. At the same time, there is an enhanced appreciation of the imperfections, biases and blind spots in the data and in analytical approaches. Here we identify and consider significant open questions concerning the role of LGT in genome evolution.  相似文献   

11.

Background

Lateral gene transfer (LGT) is an important evolutionary process in microbial evolution. In sewage treatment plants, LGT of antibiotic resistance and xenobiotic degradation-related proteins has been suggested, but the role of LGT outside these processes is unknown. Microbial communities involved in Enhanced Biological Phosphorus Removal (EBPR) have been used to treat wastewater in the last 50 years and may provide insights into adaptation to an engineered environment. We introduce two different types of analysis to identify LGT in EBPR sewage communities, based on identifying assembled sequences with more than one strong taxonomic match, and on unusual phylogenetic patterns. We applied these methods to investigate the role of LGT in six energy-related metabolic pathways.

Results

The analyses identified overlapping but non-identical sets of transferred enzymes. All of these were homologous with sequences from known mobile genetic elements, and many were also in close proximity to transposases and integrases in the EBPR data set. The taxonomic method had higher sensitivity than the phylogenetic method, identifying more potential LGTs. Both analyses identified the putative transfer of five enzymes within an Australian community, two in a Danish community, and none in a US-derived culture.

Conclusions

Our methods were able to identify sequences with unusual phylogenetic or compositional properties as candidate LGT events. The association of these candidates with known mobile elements supports the hypothesis of transfer. The results of our analysis strongly suggest that LGT has influenced the development of functionally important energy-related pathways in EBPR systems, but transfers may be unique to each community due to different operating conditions or taxonomic composition.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1752-5) contains supplementary material, which is available to authorized users.  相似文献   

12.
Genetic recombinants that resulted from lateral gene transfer (LGT) have been detected in sexually transmitted disease isolates of Chlamydia trachomatis, but a mechanism for LGT in C. trachomatis has not been described. We describe here a system that readily detects C. trachomatis LGT in vitro and that may facilitate discovery of its mechanisms. Host cells were simultaneously infected in the absence of antibiotics with an ofloxacin-resistant mutant and a second mutant that was resistant to lincomycin, trimethoprim, or rifampin. Selection for doubly resistant C. trachomatis isolates in the progeny detected apparent recombinant frequencies of 10(-4) to 10(-3), approximately 10(4) times more frequent than doubly resistant spontaneous mutants in progeny from uniparental control infections. Polyclonal doubly resistant populations and clones isolated from them in the absence of antibiotics had the specific resistance-conferring mutations present in the parental mutants; absence of the corresponding normal nucleotides indicated that they had been replaced by homologous recombination. These results eliminate spontaneous mutation, between-strain complementation, and heterotypic resistance as general explanations of multiply resistant C. trachomatis that originated in mixed infections in our experiments and demonstrate genetic stability of the recombinants. The kind of LGT we observed might be useful for creating new strains for functional studies by creating new alleles or combinations of alleles of polymorphic loci and might also disseminate antibiotic resistance genes in vivo. The apparent absence of phages and conjugative plasmids in C. trachomatis suggests that the LGT may have occurred by means of natural DNA transformation. Therefore, the experimental system may have implications for genetically altering C. trachomatis by means of DNA transfer.  相似文献   

13.
Speciation of sexually reproducing organisms requires reproductive barriers. Prokaryotes reproduce asexually but?often exchange DNA by lateral gene transfer mechanisms and recombination [1], yet distinct lineages are still observed. Thus, barriers to gene flow such as geographic isolation, genetic incompatibility or a physiological inability to transfer DNA represent potential underlying mechanisms behind preferred exchange groups observed in prokaryotes [2-6]. In Bacteria, experimental evidence showed that sequence divergence impedes homologous recombination between bacterial species [7-11]. Here we study interspecies gene exchange in halophilic archaea that possess a parasexual mechanism of genetic exchange that is functional between species [12, 13]. In this process, cells fuse forming a diploid state containing the full genetic repertoire of both parental cells, which facilitates genetic exchange and recombination. Later, cells separate, occasionally resulting in hybrids of the parental strains [14]. We show high recombination frequencies between Haloferax volcanii and Haloferax mediterranei, two species that have an average nucleotide sequence identity of 86.6%. Whole genome sequencing of Haloferax interspecies hybrids revealed the exchange of chromosomal fragments ranging from 310Kb to 530Kb. These results show that recombination barriers may be more permissive in halophilic archaea than they are in bacteria.  相似文献   

14.
Genetic material can be transmitted not only vertically from parent to offspring, but also laterally (horizontally) from one bacterial lineage to another. Lateral genetic transfer is non-uniform; biases in its nature or frequency construct communities of genetic exchange. These biases have been proposed to arise from phylogenetic relatedness, shared ecology and/or common lifestyle. Here, we test these hypotheses using a graph-based abstraction of inferred genetic-exchange relationships among 27 Escherichia coli and Shigella genomes. We show that although barriers to inter-phylogenetic group lateral transfer are low, E. coli and Shigella are more likely to have exchanged genetic material with close relatives. We find little evidence of bias arising from shared environment or lifestyle. More than one-third of donor–recipient pairs in our analysis show some level of fragmentary gene transfer. Thus, within the E. coliShigella clade, intact genes and gene fragments have been disseminated non-uniformly and at appreciable frequency, constructing communities that transgress environmental and lifestyle boundaries.  相似文献   

15.
Natural phage communities are reservoirs of the greatest uncharacterized genetic diversity on Earth. Yet, identical phage sequences can be found in extremely different environments, which implies that there is wide circulation of viral genes among distantly related host populations. Further evidence of genetic exchange among phage and host communities is the presence in phage of genes coding for proteins that are essential for photosynthesis. These observations support the idea that a primary role of host populations in phage ecology and evolution is to serve as vectors for genetic exchange.  相似文献   

16.
Lateral gene transfer (LGT), the exchange of genetic information between (primarily prokaryotic) lineages, not only makes construction of a universal Tree of Life (TOL) difficult to achieve, but calls into question the utility and meaning of any result. Here I review the science of prokaryotic LGT, the philosophy of the TOL as it figured in Darwin’s formulation of the Theory of Evolution, and the politics of the current debate within the discipline over how threats to the TOL should be represented outside it. We could encourage a more realistic and supportive public understanding of evolution by admitting that what we believe in is not a unified meta-theory but a versatile and well-stocked explanatory toolkit.  相似文献   

17.
Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobacteria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample. Using a minimal lateral network approach, we compared LGT rates at different phylogenetic depths. In general, gene evolution by LGT within proteobacteria is very common. At least one LGT event was inferred to have occurred in at least 75% of the protein families. The average LGT rate at the species and class depth is about one LGT event per protein family, the rate doubling at the phylum level to an average of two LGT events per protein family. Hence, our results indicate that the rate of gene acquisition per protein family is similar at the level of species (by recombination) and at the level of classes (by LGT). The frequency of LGT per genome strongly depends on the species lifestyle, with endosymbionts showing far lower LGT frequencies than free-living species. Moreover, the nature of the transferred genes suggests that gene transfer in proteobacteria is frequently mediated by conjugation.  相似文献   

18.
Lateral gene transfer (LGT) from bacteria to animals occurs more frequently than was appreciated prior to the advent of genome sequencing. In 2007, LGT from bacterial Wolbachia endosymbionts was detected in ∼33% of the sequenced arthropod genomes using a bioinformatic approach. Today, Wolbachia/host LGT is thought to be widespread and many other cases of bacteria-animal LGT have been described. In insects, LGT may be more frequently associated with endosymbionts that colonize germ cells and germ stem cells, like Wolbachia endosymbionts. We speculate that LGT may occur from bacteria to a wide variety of eukaryotes, but only becomes vertically inherited when it occurs in germ cells. As such, LGT may happen routinely in somatic cells but never become inherited or fixed in the population. Lack of inheritance of such mutations greatly decreases our ability to detect them. In this review, we propose that such noninherited bacterial DNA integration into chromosomes in human somatic cells could induce mutations leading to cancer or autoimmune diseases in a manner analogous to mobile elements and viral integrations.  相似文献   

19.
The type 1 (microbial) rhodopsins are a diverse group of photochemically reactive proteins that span the three domains of life. Their broad phylogenetic distribution has motivated conjecture that rhodopsin-like functionality was present in the last common ancestor of all life. Here, we discuss the evolution of the type 1 microbial rhodopsins and document five cases of lateral gene transfer (LGT) between domains. We suggest that, thanks to the functional versatility of these retinylidene proteins and the relative ease with which they can complement the existing energy-generating or photosensory repertoires of many organisms, LGT is in fact the principal force that determines their broad but patchy distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号