首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a dioecious population having numbers of males and females that vary over time in cycles of length k. It is shown that if k is small in comparison with the numbers of males and females in any generation of the cycle, the effective population number (or size), N(e), is approximately equal to the harmonic mean of the effective population sizes during any given cycle. This result holds whether the locus under consideration is autosomal or sex-linked and whether inbreeding effective population numbers or variance effective population numbers are involved in the calculation of N(e). If, however, only two successive generations in the cycle are considered and the population changes in size between these generations, the inbreeding effective population number, N(eI), differs from the variance effective population number, N(eV). The mutation effective population number turns out to be the same as the number derived using calculations involving probabilities of identity by descent. It is also shown that, at least in one special case, the eigenvalue effective population number is the same as N(eV).  相似文献   

2.
For a Wright–Fisher model with mutation whose population size fluctuates stochastically from generation to generation, a heterozygosity effective population size is defined by means of the equilibrium average heterozygosity of the population. It is shown that this effective population size is equal to the harmonic mean of population size if and only if the stochastic changes of population size are uncorrelated. The effective population size is larger (resp. smaller) than the harmonic mean when the stochastic changes of population size are positively (resp. negatively) autocorrelated. These results and those obtained so far for other stochastic models with fluctuating population size suggest that the property that effective population sizes are always larger than the harmonic mean under the fluctuation of population size holds only for continuous time models such as diffusion and coalescent models, whereas effective population sizes can be equal to or smaller than the harmonic mean for discrete time models.  相似文献   

3.
We consider haploid and dioecious age-structured populations that vary over time in cycles of length k. Results are obtained for both autosomal and sex-linked loci if the population is dioecious. It is assumed that k is small in comparison with numbers of haploid individuals (or of numbers of males and females) in any generation of a cycle. The inbreeding effective population size N(e) is then approximately given by the expression [T summation operator (k-1)(j=0)1/[N(e)(j)T(j)]](-1), where N(e)(j) and T(j) are, respectively, the effective population size and generation interval that would hold if the population was at all times generated in the same way as at time j. The constant T, which is the effective overall generation interval, is defined to be k times the harmonic mean of the quantities T(j). Our expressions for T and N(e), in terms of N(e)(j) and T(j), are general, but the N(e)(j)s are derived under the assumption that offspring are produced according to Poisson distributions.  相似文献   

4.
We consider a Wright-Fisher model whose population size is an autocorrelated stochastic process. Our interest is in the effects of autocorrelated fluctuations of the population size on the effective size. We define the inbreeding effective size and the variance effective size and show that these effective sizes are the same for this model. In the literature, it is said that the effective size is equal to the harmonic mean of population size when the size fluctuates. We will show, however, that the effective size is not the same as the harmonic mean of population size unless the fluctuations of population size are uncorrelated. The effective size is larger (resp. smaller) than the harmonic mean when the fluctuations of population size are positively (resp. negatively) autocorrelated. Further, we obtain some asymptotic expressions for effective size when the population size is very large and/or the autocorrelation of the fluctuation is very strong.  相似文献   

5.
The commonly used procedure to calculate inbreeding coefficients by effective population numbers (Ne) by the harmonic mean of generation-by-generation population sizes involves a computational bias. If the individual population sizes are considered as realizations of a binomially distributed random variable with sample size N and probability p, this bias can be investigated for the two cases p = constant and p = variable (Markov chain). The bias is of practical relevance only for small probabilities p, short period of initial successive generations, and small population sizes. The largest values for this computational bias are in the range of 0.05-0.06. It is concluded that for most practical purposes the approximate procedure is appropriate.  相似文献   

6.
The effective population size (Ne), and the ratio between Ne and census population size (N) are often used as measures of population viability. We show that using the harmonic mean of population sizes over time – a common proxy for Ne– has some important evolutionary consequences and implications for conservation management. This stems from the fact that there is no unambiguous relationship between the arithmetic and harmonic means for populations fluctuating in size. As long as the variance of population size increases moderately with increasing arithmetic mean population size, the harmonic mean also increases. However, if the variance of population size increases more rapidly, which existing data often suggest, then the harmonic mean may actually decrease with increasing arithmetic mean. Thus maximizing N may not maximize Ne, but could instead lower the adaptive potential and hence limit the evolutionary response to environmental change. Large census size has the clear advantage of lowering demographic stochasticity, and hence extinction risk, and under certain conditions large census size also minimizes the loss of genetic variation. Consequently, maximising census size has served as a useful dogma in ecology, genetics and conservation. Nonetheless, due to the intricate relationships among Ne, population viability and the properties of population fluctuations, we suggest that this dogma should be taken only as a rule of thumb.  相似文献   

7.
Coalescent process with fluctuating population size and its effective size   总被引:3,自引:0,他引:3  
We consider a Wright-Fisher model whose population size is a finite Markov chain. We introduce a sequence of two-dimensional discrete time Markov chains whose components describe the coalescent process and the fluctuation of population size. For the limiting process of the sequence of Markov chains, the relationship of the expectation of coalescence time to the harmonic and the arithmetic means of population sizes is shown, and the Laplace transform of the distribution of coalescence time is calculated. We define the coalescence effective population size (cEPS) by the expectation of coalescence time. We show that cEPS is strictly larger (resp. smaller) than the harmonic (resp. arithmetic) mean. As the population size fluctuates more quickly (resp. slowly), cEPS is closer to the harmonic (resp. arithmetic) mean. For the case of a two-valued Markov chain, we show the explicit expression of cEPS and its dependency on the sample size.  相似文献   

8.
Bryophytes with their dominant haploid stage conform poorly to the life cycles generally treated in population genetical models. Here we make a detailed analysis of what effective sizes bryophyte model populations have as a function of their breeding system. It is found that the effective size is rarely much smaller than the scored number of haploid gametophytic individuals, even when the limited number of diploids (sporophytes) formed is taken into account. The most severe decrease in effective size occurs when unisexual gametophytic females produce only a small number of fertile diploid sporophytes in male biased populations; this effect is due to the restricted sampling of male gametophytic individuals that then occurs. It is shown that the harmonic mean of diploid sporophytes formed per haploid gametophytic individuals is the relevant measure in these calculations and not the standard (and generally larger) arithmetic mean.  相似文献   

9.
It was shown by Gillespie [1974. Am. Nat. 108, 145–151], that if two genotypes produce the same average number of offspring on but have a different variance associated within each generation, the genotype with a lower variance will have a higher effective fitness. Specifically, the effective fitness is {ei65-1}, where w is the mean fitness, {ei65-2} is the variance in offspring number, and N is the total population size. The model also predicts that if a strategy has a higher arithmetic mean fitness and a higher variance than the competitor, the outcome of selection will depend on the population size (with larger population sizes favoring the highvariance, high-mean genotype). This suggests that for metapopulation sizes favoring the high-variance, high-mean genotype). This suggests that for metapopulations with large numbers of (relatively) small demes, a strategy with lower variance and lower mean may be favored if the migration rate is low while higher migration rates (consistent with a larger effective population size) favor the opposite strategy. Individual-based simulation confirms that this is indeed the case for an island model of migration, though the effect of migration differs greatly depending on whether migration precedes or follows selection. It is noted in the appendix that while Gillespie [1974. Am. Nat. 108, 145–151] does seem to be heuristically accurate, it is not clear that the definition of effective fitness follows from his derivation.  相似文献   

10.
Iizuka M  Tachida H  Matsuda H 《Genetics》2002,161(1):381-388
We consider a diffusion model with neutral alleles whose population size is fluctuating randomly. For this model, the effects of fluctuation of population size on the effective size are investigated. The effective size defined by the equilibrium average heterozygosity is larger than the harmonic mean of population size but smaller than the arithmetic mean of population size. To see explicitly the effects of fluctuation of population size on the effective size, we investigate a special case where population size fluctuates between two distinct states. In some cases, the effective size is very different from the harmonic mean. For this concrete model, we also obtain the stationary distribution of the average heterozygosity. Asymptotic behavior of the effective size is obtained when the population size is large and/or autocorrelation of the fluctuation is weak or strong.  相似文献   

11.
A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.  相似文献   

12.
Effective Sizes for Subdivided Populations   总被引:3,自引:0,他引:3       下载免费PDF全文
Many derivations of effective population sizes have been suggested in the literature; however, few account for the breeding structure and none can readily be expanded to subdivided populations. Breeding structures influence gene correlations through their effects on the number of breeding individuals of each sex, the mean number of progeny per female, and the variance in the number of progeny produced by males and females. Additionally, hierarchical structuring in a population is determined by the number of breeding groups and the migration rates of males and females among such groups. This study derives analytical solutions for effective sizes that can be applied to subdivided populations. Parameters that encapsulate breeding structure and subdivision are utilized to derive the traditional inbreeding and variance effective sizes. Also, it is shown that effective sizes can be determined for any hierarchical level of population structure for which gene correlations can accrue. Derivations of effective sizes for the accumulation of gene correlations within breeding groups (coancestral effective size) and among breeding groups (intergroup effective size) are given. The results converge to traditional, single population measures when similar assumptions are applied. In particular, inbreeding and intergroup effective sizes are shown to be special cases of the coancestral effective size, and intergroup and variance effective sizes will be equal if the population census remains constant. Instantaneous solutions for effective sizes, at any time after gene correlation begins to accrue, are given in terms of traditional F statistics or transition equations. All effective sizes are shown to converge upon a common asymptotic value when breeding tactics and migration rates are constant. The asymptotic effective size can be expressed in terms of the fixation indices and the number of breeding groups; however, the rate of approach to the asymptote is dependent upon dispersal rates. For accurate assessment of effective sizes, initial, instantaneous or asymptotic, the expressions must be applied at the lowest levels at which migration among breeding groups is nonrandom. Thus, the expressions may be applicable to lineages within socially structured populations, fragmented populations (if random exchange of genes prevails within each population), or combinations of intra- and interpopulation discontinuities of gene flow. Failure to recognize internal structures of populations may lead to considerable overestimates of inbreeding effective size, while usually underestimating variance effective size.  相似文献   

13.
The amount of variability in a population that experiences repeated restrictions in population size has been calculated. The restrictions in size occur cyclically with a fixed cycle length. Analytical formulas for describing the gene identity at any specific time in the expanded and restricted phases of the cycle, and for the average and second moment of the gene identity, have been derived. It is shown that the level of genetic diversity depends critically on the two parameters that account for the population size, mutation rate and the time of duration for each of the two phases in the cycle. If one or both of these composite parameters are small, the gene diversity will be much reduced, and population gene diversity will then be predictable from knowledge of the harmonic mean population size over the entire cycle. If these parameters take on intermediate values, diversity changes constantly during the cycle, fluctuating steadily from a high to a low value and back again. If these parameters are large, gene diversity will fluctuate rapidly between extreme values and will stay at the extremes for long periods of time.  相似文献   

14.
This work extends the work of Whitlock in examining the critical effective population sizes from the fixation of both deleterious and beneficial mutations under drift and selection to prevent mutation breakdown of the population. The validity of approximations for the probability of fixation depends on the nature of the assumed distribution for the fitness effect of both types of mutations. Using no approximation for the probability of fixation and assuming a heavy tailed fitness effect distribution, the current model indicates that the coefficients of variation for the fitness effect distributions of both types of mutations and the fitness effect distribution mean for the beneficial mutations are important predictors of the critical effective population size. The current model further predicts that very small populations can be sustained if the fitness effect variances for both types of mutations and the mean for beneficial mutations are large.  相似文献   

15.
Maintaining genetic variation and minimizing inbreeding are central goals of conservation genetics. It is therefore crucial to understand the important population parameters that affect inbreeding, particularly in reintroduction programs. Using data from 41 reintroduced Alpine ibex (Capra ibex ibex) populations we estimated inbreeding since the beginning of reintroductions using population-specific Fst, and inbreeding over the last few generations with contemporary effective population sizes. Total levels of inbreeding since reintroduction of ibex were, on average, close to that from one generation of half-sib mating. Contemporary effective population sizes did not reflect total inbreeding since reintroduction, but 16% of variation in contemporary effective population sizes among populations was due to variation in current population sizes. Substantial variation in inbreeding levels among populations was explained by founder group sizes and the harmonic mean population sizes since founding. This study emphasizes that, in addition to founder group sizes, early population growth rates are important parameters determining inbreeding levels in reintroduced populations.  相似文献   

16.
The Age of a Neutral Mutant Persisting in a Finite Population   总被引:18,自引:3,他引:15       下载免费PDF全文
Motoo Kimura  Tomoko Ohta 《Genetics》1973,75(1):199-212
Formulae for the mean and the mean square age of a neutral allele which is segregating with frequency x in a population of effective size N(e) have been obtained using the diffusion equation method, for the case of 4N(e)v<1 where v is the mutation rate. It has been shown that the average ages of neutral alleles, even if their frequencies are relatively low, are quite old. For example, a neutral mutant whose current frequency is 10% has the expected age roughly equal to the effective population size N(e) and the standard deviation 1.4N(e) (in generations), assuming that this mutant has increased by random drift from a very low frequency. Also, formulae for the mean "first arrival time" of a neutral mutant to a certain frequency x have been presented. In addition, a new, approximate method has been developed which enables us to obtain the condition under which frequencies of "rare" polymorphic alleles among local populations are expected to be uniform if the alleles are selectively neutral.-It was concluded that exchange of only a few individuals on the average between adjacent colonies per generation is enough to bring about such a uniformity of frequencies.  相似文献   

17.
A formula for the effective population size for the finite island model of subdivided populations is derived. The formula indicates that the effective size can be substantially greater than the actual number of individuals in the entire population when the migration rate among subpopulations is small. It is shown that the mean nucleotide diversity, coalescence time, and heterozygosity for genes sampled from the entire population can be predicted fairly well from the theory for randomly mating populations if the effective population size for the finite island model is used.  相似文献   

18.
Polymorphisms at di-, tri-, and tetranucleotide microsatellite loci have been analyzed in 14 worldwide populations. A statistical index of population expansion, denoted S(k), is introduced to detect historical changes in population size using the variation at the microsatellites. The index takes the value 0 at equilibrium with constant population size and is positive or negative according to whether the population is expanding or contracting, respectively. The use of S(k) requires estimation of properties of the mutation distribution for which we use both family data of Dib et al. for dinucleotide loci and our population data on tri- and tetranucleotide loci. Statistical estimates of the expansion index, as well as their confidence intervals from bootstrap resampling, are provided. In addition, a dynamical analysis of S(k) is presented under various assumptions on population growth or decline. The studied populations are classified as having high, intermediate, or low values of S(k) and genetic variation, and we use these to interpret the data in terms of possible population dynamics. Observed values of S(k) for samples of di-, tri-, and tetranucleotide data are compatible with population expansion earlier than 60,000 years ago in Africa, Asia, and Europe if the initial population size before the expansion was on the order of 500. Larger initial population sizes force the lower bound for the time since expansion to be much earlier. We find it unlikely that bottlenecks occurred in Central African, East Asian, or European populations, and the estimated expansion times are rather similar for all of these populations. This analysis presented here suggests that modern human populations departed from Africa long before they began to expand in size. Subsequently, the major groups (the African, East Asian, and European groups) started to grow at approximately same time. Populations of South America and Oceania show almost no growth. The Mbuti population from Zaire appears to have experienced a bottleneck during its expansion.  相似文献   

19.
Correlated responses to selection for postweaning gain in mice were studied to determine the influence of population size and selection intensity. Correlated traits measured were three-, six- and eight-week body weights, litter size, twelve-day litter weight, proportion infertile matings and two indexes of reproductive performance. In general, the results agreed with observations made on direct response: correlated responses in the body weight traits and litter size increased as (1) selection intensity increased and (2) effective population size increased. Correlated responses in the body weight traits and litter size were positive in the large population size lines (16 pairs), as expected from the positive genetic correlation between these traits and postweaning gain. However, several negative correlated responses were observed at small population sizes (one and two pairs). Within each level of selection intensity, traits generally associated with fitness tended to decline most in the very small populations (one and two pairs) and in the large populations (16 pairs) for apparently different reasons. The fitness decline at the small effective population sizes was attributable to inbreeding depression. In contrast, it was postulated that the fitness decline at the large effective population size was due to selection moving the population mean for body weight and a trait positively correlated genetically with body weight (i.e., percent body fat) away from an optimum.  相似文献   

20.
Population sizes of two ice nucleation-active strains of Pseudomonas syringae were compared on leaves in controlled environments and in the field to determine the ability of microcosm studies to predict plant habitat preferences in the field. The P. syringae strains investigated were the parental strains of recombinant deletion mutant strains deficient in ice nucleation activity that had been field tested for their ability to control plant frost injury. The population size of the P. syringae strains was measured after inoculation at three field locations on up to 40 of the same plant species that were studied in the growth chamber. There was seldom a significant relationship between the mean population size of a given P. syringae strain incubated under either wet or dry conditions in microcosms and the mean population size which could be recovered from the same species when inoculated in the field. Specifically, on some plant species, the population size recovered from leaves in the field was substantially greater than from that species in a controlled environment, while for other plant species field populations were significantly smaller than those observed under controlled conditions. Population sizes of inoculated P. syringae strains, however, were frequently highly positively correlated with the indigenous bacterial population size on the same plant species in the field, suggesting that the ability of a particular plant species to support introduced bacterial strains is correlated with its ability to support large bacterial populations or that indigenous bacteria enhance the survival of introduced strains. Microcosm studies therefore seem most effective at assessing possible differences between parental and recombinant strains under a given environmental regime but are limited in their ability to predict the specific population sizes or plant habitat preferences of bacteria on leaves under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号