首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
S P Howard  J Critch    A Bedi 《Journal of bacteriology》1993,175(20):6695-6703
The exeE gene of Aeromonas hydrophila has been shown to be required for the secretion of most if not all of the extracellular proteins produced by this bacterium. In addition, an exeE::Tn5-751 insertion mutant of A. hydrophila was found to be deficient in the amounts of a number of its major outer membrane proteins (B. Jiang and S. P. Howard, J. Bacteriol. 173:1241-1249, 1991). The exeE gene and the exeF gene were previously isolated as part of a fragment which complemented this mutant. In this study, we have isolated and sequenced a further eight exe genes, exeG through exeN, which constitute the 3' end of the exe operon. These genes have a high degree of similarity with the extracellular secretion operons of a number of different gram-negative bacteria. Marker exchange mutagenesis was used to insert kanamycin resistance cassettes into three different regions of the exe operon. The phenotypes of these mutants showed that in A. hydrophila this operon is required not only for extracellular protein secretion but also for normal assembly of the outer membrane, in particular with respect to the quantities of the major porins. Five of the Exe proteins contain type IV prepilin signal sequences, although the prepilin peptidase gene does not appear to form part of the exe operon. Limited processing of the ExeG protein was observed when it was expressed in Escherichia coli, and this processing was greatly accelerated in the presence of the prepilin peptidase of Pseudomonas aeruginosa.  相似文献   

2.
Strain C5.84 is a Tn5-751 insertion mutant of Aeromonas hydrophila which is unable to secrete extracellular proteins, instead accumulating them in the periplasm (B. Jiang and S.P. Howard, J. Bacteriol. 173:1241-1249, 1991). A 3.5-kb BglII fragment which complements this mutation was isolated from the chromosome of the parent strain. Analysis of this fragment revealed an operon-like structure with two complete genes, exeA and exeB, a functional promoter 5' to the exeA gene, and a 13-bp inverted repeat immediately 3' to the exeB gene. Although the transposon had inserted in exeA, provision of a wild-type copy of this gene alone in trans did not restore competence for export to C5.84. Complementation required the presence of both exeA and exeB, and marker exchange mutagenesis confirmed the requirement for both gene products for secretion. In vitro expression as well as analysis of the deduced amino acid sequence of ExeA indicated that it is a hydrophilic 60-kDa protein with a consensus ATP binding site. ExeB is a 25-kDa basic protein which shares limited homology with PulB, a protein of unknown function associated with the maltose regulon of Klebsiella oxytoca, and OutB, a protein which has been shown to be required for efficient secretion in Erwinia chrysanthemi. The hydrophilic character of these proteins and preliminary localization studies suggested that they are anchored to the inner membrane. These results demonstrate the involvement of a second operon encoding a putative ATP-binding protein in the secretion of extracellular proteins from gram-negative bacteria and further suggest that the cytoplasmic compartment may play a greater role in protein translocation across the outer membrane from the periplasm than previously thought.  相似文献   

3.
The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.  相似文献   

4.
5.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

6.
Protein secretion in Pseudomonas aeruginosa.   总被引:24,自引:0,他引:24  
The Gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into the extracellular medium. At least two distinct secretion pathways can be discerned. The majority of the exoproteins are secreted via a two-step mechanism. These proteins are first translocated across the inner membrane in a signal sequence-dependent fashion. The subsequent translocation across the outer membrane requires the products of at least 12 distinct xcp genes. The exact role of one of these proteins, the XcpA protein, has been resolved. It is a peptidase that is required for the processing of the precursors of four other Xcp proteins, thus allowing their assembly into the secretion apparatus. This peptidase is also required for the processing of the precursors of type IV pili subunits. Two other Xcp proteins, XcpR and XcpS, display extensive homology to proteins involved in pili biogenesis, which suggests that the assembly of the secretion apparatus and the biogenesis of type IV pili are related processes. The secretion of alkaline protease does not require the xcp gene products. This enzyme, which is encoded by the aprA gene, is not synthesized in a precursor form with an N-terminal signal sequence. Secretion across the two membranes probably takes place in one step at adhesion zones that may be constituted by three accessory proteins, designated AprD, AprE and AprF. The two secretion pathways found in P. aeruginosa appear to have disseminated widely among Gram-negative bacteria.  相似文献   

7.
Curli are extracellular amyloid fibres produced by Escherichia coli that are critical for biofilm formation and adhesion to biotic and abiotic surfaces. CsgA and CsgB are the major and minor curli subunits, respectively, while CsgE, CsgF and CsgG direct the extracellular localization and assembly of curli subunits into fibres. The secretion and stability of CsgA and CsgB are dependent on the outer membrane lipoprotein CsgG. Here, we identified functional interactions between CsgG and CsgE during curli secretion. We discovered that CsgG overexpression restored curli production to a csgE strain under curli-inducing conditions. In antibiotic sensitivity and protein secretion assays, CsgG expression alone allowed translocation of erythromycin and small periplasmic proteins across the outer membrane. Coexpression of CsgE with CsgG blocked non-specific protein and antibiotic passage across the outer membrane. However, CsgE did not block secretion of proteins containing a 22-amino-acid putative outer membrane secretion signal of CsgA (A22). Finally, using purified proteins, we found that CsgE prohibited the self-assembly of CsgA into amyloid fibres. Collectively, these data indicate that CsgE provides substrate specificity to the curli secretion pore CsgG, and acts directly on the secretion substrate CsgA to prevent premature subunit assembly.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC), an important cause of infantile diarrhoea in the developing world, disrupts host cell microvilli, causes actin rearrangements and attaches intimately to the host cell surface. This characteristic phenotype, referred to as the attaching and effacing (A/E) effect, is encoded on a 36 kb pathogenicity island called the locus of enterocyte effacement (LEE). The LEE includes genes involved in type III secretion and translocation, the eae gene encoding an outer membrane adhesin known as intimin, the tir gene for the translocated intimin receptor, a regulator and various genes of unknown function. Among this last group is sepL. To determine the role of SepL in EPEC pathogenesis, we constructed and tested a non-polar sepL mutant. We found that this sepL mutant is deficient for A/E and that it secretes markedly reduced quantities of those proteins involved in translocation (EspA, EspB and EspD), but normal levels of those proteins presumed to be effectors (Tir, EspF and EspG). Despite normal levels of secretion, the mutant strain was unable to translocate EspF and Tir into host cells and formed no EspA filaments. Fractionation studies revealed that SepL is a soluble cytoplasmic protein. Yeast two-hybrid and affinity purification studies indicated that SepL interacts with the LEE-encoded protein SepD. In contrast to SepL, we found that SepD is required for type III secretion of both translocation and effector proteins. Together, these results demonstrate that SepL has a unique role in type III secretion as a functional component of the translocation system that interacts with an essential element of the secretion machinery.  相似文献   

9.
The xcp genes are required for protein secretion by Pseudomonas aeruginosa. They are involved in the second step of the process, i.e. the translocation across the outer membrane, after the exoproteins have reached the periplasm in a signal peptide dependent fashion. The nucleotide sequence of a 2.5 kb DNA fragment containing xcp genes showed at least two complete open reading frames, potentially encoding proteins with molecular weights of 41 and 19 kd. Products with these apparent molecular weights were identified after expression of the DNA fragment in vitro and in vivo. Subcloning and complementation experiments showed that both proteins are required for secretion. The two products are located in the inner membrane and share highly significant homologies with the PulL and PulM proteins which are required for the specific secretion of pullulanase in Klebsiella pneumoniae. These homologies reveal the existence of a common mechanism for protein secretion in Pseudomonas aeruginosa and Klebsiella pneumoniae.  相似文献   

10.
Transposon mutagenesis was used to isolate mutants of Aeromonas hydrophila which were deficient in the production of extracellular proteins. The culture supernatants of two of the mutants were essentially devoid of the proteins normally secreted by the parent strain, despite their continued synthesis. Western immunoblot analysis of one of these proteins indicated that normal signal sequence processing occurred but that normal zymogen activation did not, and cell fractionation experiments indicated that both mutants accumulated the three different extracellular proteins assayed in a position external to the cytoplasmic membrane, presumably in the periplasm. The two mutants differed, however, in that one was lysed during the osmotic shock procedures and also contained severely reduced amounts of two of the major protein components of the outer membrane. The wild-type chromosomal regions into which the transposon had been inserted in the two mutants were cloned. In each case, transconjugants of the mutants containing the corresponding cloned fragment were complemented for the defects in secretion, and one of the mutants was complemented by the heterologous clone as well, suggesting the possibility of an interaction between these two genes or gene products. These results indicate that two separate functions which are required for extracellular secretion were interrupted in the insertion mutants and that one of these is also critically important in the biogenesis of the outer membrane.  相似文献   

11.
Secretion of fully folded extracellular proteins across the outer membrane of Gram-negative bacteria is mainly assisted by the ATP-dependent type II secretion system (T2SS). Depending on species, 12-15 proteins are usually required for the function of T2SS by forming a trans-envelope multiprotein secretion complex. Here we report crystal structures of an essential component of the Xanthomonas campestris T2SS, the 21-kDa N-terminal domain of cytosolic secretion ATPase XpsE (XpsEN), in two conformational states. By mediating interaction between XpsE and the cytoplasmic membrane protein XpsL, XpsEN anchors XpsE to the membrane-associated secretion complex to allow the coupling between ATP utilization and exoprotein secretion. The structure of XpsEN observed in crystal form P4(3)2(1)2 is composed of a 90-residue alpha/beta sandwich core domain capped by a 62-residue N-terminal helical region. The core domain exhibits structural similarity with the NifU-like domain, suggesting that XpsE(N) may be involved in the regulation of XpsE ATPase activity. Surprisingly, although a similar core domain structure was observed in crystal form I4(1)22, the N-terminal 36 residues of the helical region undergo a large structural rearrangement. Deletion analysis indicates that these residues are required for exoprotein secretion by mediating the XpsE/XpsL interaction. Site-directed mutagenesis study further suggests the more compact conformation observed in the P4(3)2(1)2 crystal likely represents the XpsL binding-competent state. Based on these findings, we speculate that XpsE might function in T2SS by cycling between two conformational states. As a closely related protein to XpsE, secretion ATPase PilB may function similarly in the type IV pilus assembly.  相似文献   

12.
The xcp genes are required for the secretion of most extracellular proteins by Pseudomonas aeruginosa. The products of these genes are essential for the transport of exoproteins across the outer membrane after they have reached the periplasm via a signal sequence-dependent pathway. To date, analysis of three xcp genes has suggested the conservation of this secretion pathway in many Gram-negative bacteria. Furthermore, the xcpA gene was shown to be identical to pilD, which encodes a peptidase involved in the processing of fimbrial (pili) subunits, suggesting a connection between pili biogenesis and protein secretion. Here the nucleotide sequences of seven other xcp genes, designated xcpR to -X, are presented. The N-termini of four of the encoded Xcp proteins display similarity to the N-termini of type IV pili, suggesting that XcpA is involved in the processing of these Xcp proteins. This could indeed be demonstrated in vivo. Furthermore, two other proteins, XcpR and XcpS, show similarity to the PilB and PilC proteins required for fimbriae assembly. Since XcpR and PilB display a canonical nucleotide-binding site, ATP hydrolysis may provide energy for both systems.  相似文献   

13.
Asymmetric localization of proteins is essential to many biological functions of bacteria. Shigella IcsA, an outer membrane protein, is localized to the old pole of the bacillus, where it mediates assembly of a polarized actin tail during infection of mammalian cells. Actin tail assembly provides the propulsive force for intracellular movement and intercellular dissemination. Localization of IcsA to the pole is independent of the amino-terminal signal peptide (Charles, M., Perez, M., Kobil, J.H., and Goldberg, M.B., 2001, Proc Natl Acad Sci USA 98: 9871-9876) suggesting that IcsA targeting occurs in the bacterial cytoplasm and that its secretion across the cytoplasmic membrane occurs only at the pole. Here, we characterize the mechanism by which IcsA is secreted across the cytoplasmic membrane. We present evidence that IcsA requires the SecA ATPase and the SecYEG membrane channel (translocon) for secretion. Our data suggest that YidC is not required for IcsA secretion. Furthermore, we show that polar localization of IcsA is independent of SecA. Finally, we demonstrate that while IcsA requires the SecYEG translocon for secretion, components of this apparatus are uniformly distributed within the membrane. Based on these data, we propose a model for coordinate polar targeting and secretion of IcsA at the bacterial pole.  相似文献   

14.
Genes involved in the production of phaseolotoxin by Pseudomonas syringae pv. "phaseolicola" NPS3121 were identified by Tn5 mutagenesis and cosmid cloning. A total of 5,180 kanamycin-resistant colonies were screened for the loss of phaseolotoxin production by a microbiological assay. Six independent, prototrophic, Tox- mutants were isolated that had Tn5 insertions in five different EcoRI fragments. All six mutants had Tn5 inserted in the same KpnI fragment, which had a length of ca. 28 kilobases including Tn5. The mutants produced residual toxin in vitro. An EcoRI fragment containing Tn5 and flanking sequences from mutant NPS4336 was cloned and used to probe a wild-type genomic library by colony hybridization. Seven recombinant plasmids showing homology to this probe were identified. Each Tox- mutant was restored in OCTase-specific toxin production by two or more of the recombinant plasmids. The data suggest that at least some of the genes involved in phaseolotoxin production were clustered in a large KpnI fragment. No homology was detected between the Tn5 target fragment cloned from mutant NPS4336 and the total genomic DNA from closely or distantly related bacteria that do not produce phaseolotoxin.  相似文献   

15.
NodO is a secreted protein from Rhizobium leguminosarum bv. viciae with a role in signalling during legume nodulation. A Tn5-induced mutant was identified that was defective in NodO secretion. As predicted, the secretion defect decreased pea and vetch nodulation but only when the nodE gene was also mutated. This confirms earlier observations that NodO plays a particularly important role in nodulation when Nod factors carrying C18:1 (but not C18:4) acyl groups are the primary signalling molecules. In addition to NodO secretion and nodulation, the secretion mutant had a number of other characteristics. Several additional proteins including at least three Ca2+-binding proteins were not secreted by the mutant and this is thought to have caused the pleiotropic phenotype. The nodules formed by the secretion mutant were unable to fix nitrogen efficiently; this was not due to a defect in invasion because the nodule structures appeared normal and nodule cells contained many bacteroids. The mutant formed sticky colonies and viscous liquid cultures; analysis of the acidic exopolysaccharide revealed a decrease in the ratio of reducing sugars to total sugar content, indicating a longer chain length. The use of a plate assay showed that the mutant was defective in an extracellular glycanase activity. DNA sequencing identified the prsDE genes, which are homologous to genes encoding protease export systems in Erwinia chrysanthemi and Pseudomonas aeruginosa. An endoglycanase (Egl) from Azorhizobium caulinodans may be secreted from R. leguminosarum bv. viciae in a prsD-dependent manner. We conclude that the prsDE genes encode a Type I secretion complex that is required for the secretion of NodO, a glycanase and probably a number of other proteins, at least one of which is necessary for symbiotic nitrogen fixation.  相似文献   

16.
BamHI, SalI, PstI, and KpnI fragments of pPM1 (B. pseudomallei 12.95 kb plasmid) were cloned in E. coli. The recombinant clones carrying a 7.55 kb KpnI fragment of pPM1 were highly resistant to several aminoglycosides (streptomycin, kanamycin, and gentamycin) and fluoroguinolones (perfloxacin, ofloxacin). Two outer membrane proteins (23 and 27 kDa) absent in E. coli and capable to form 120 kDa oligomer complex were detected by the Western blot method in the strain carrying recombinant pS19 plasmid. The integration of a cloned 7.55 kb sequence in the chromosome was observed by the dot and Southern hybridization analysis in the clones carrying recombinant plasmids pS12 and pS14.  相似文献   

17.
Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114.  相似文献   

18.
Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114.  相似文献   

19.
Abstract The Gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into the extracellular medium. At least two distinct secretion pathways can be discerned. The majority of the exoproteins are secreted via a two-step mechanism. These proteins are first translocated across the inner membrane in a signal sequence-dependent fashion. The subsequent translocation across the outer membrane requires the products of at least 12 distinct xcp genes. The exact role of one of these proteins, the XcpA protein, has been resolved. It is a peptidase that is required for the processing of the precursors of four other Xcp proteins, thus allowing their assembly into the secretion apparatus. This peptidase is also required for the processing of the precursors of type IV pili subunits. Two other Xcp proteins, XcpR and XcpS, display extensive homology to proteins involved in pili biogenesis, which suggests that the assembly of the secretion apparatus and the biogenesis of type IV pili are related processes. The secretion of alkaline protease does not require the xcp gene products. This enzyme, which is encoded by the aprA gene, is not synthesized in a precursor form with an N-terminal signal sequence. Secretion across the two membranes probably takes place in one step at adhesion zones that may be constituted by three accessory proteins, designated AprD, AprE and AprF. The two secretion pathways found in P. aeruginosa appear to habe disseminate widely among Gram-negative bacteria.  相似文献   

20.
The filamentous phage protein pIV is required for assembly and secretion of the virus and possesses regions homologous to those found in a number of Gram-negative bacterial proteins that are essential components of a widely distributed extracellular protein-export system. These proteins form multimers that may constitute an outer membrane channel that allows phage/protein egress. Three sets of f1 gene IV mutants were isolated at positions that are absolutely (G355 and P375) or largely (F381) conserved amongst the 16 currently known family members. The G355 mutants were non-functional, interfered with assembly of plV+ phage, and made Escherichia coli highly sensitive to deoxycholate. The P375 mutants were non-functional and defective in multimerization. Many of the F381 mutants retained substantial function, and even those in which charged residues had been introduced supported some phage assembly. Some inferences about the roles of these conserved amino acids are made from the mutant phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号