首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhodobacter sphaeroides pgsA gene (pgsARs), encoding phosphatidylglycerophosphate synthase (PgsARs), was cloned, sequenced, and expressed in both R. sphaeroides and Escherichia coli. As in E. coli, pgsARs is located immediately downstream of the uvrC gene. Comparison of the deduced amino acid sequences revealed 41% identity and 69% similarity to the pgsA gene of E. coli, with similar homology to the products of the putative pgsA genes of several other bacteria. Comparison of the amino acid sequences of a number of enzymes involved in CDP-diacylglycerol-dependent phosphatidyltransfer identified a highly conserved region also found in PgsARs. The pgsARs gene carried on multicopy plasmids was expressed in R. sphaeroides under the direction of its own promoter, the R. sphaeroides rrnB promoter, and the E. coli lac promoter, and this resulted in significant overproduction of PgsARs activity. Expression of PgsARs activity in E. coli occurred only with the E. coli lac promoter. PgsARs could functionally replace the E. coli enzyme in both a point mutant and a null mutant of E. coli pgsA. Overexpression of PgsARs in either E. coli or R. sphaeroides did not have dramatic effects on the phospholipid composition of the cells, suggesting regulation of the activity of this enzyme in both organisms.  相似文献   

2.
A conditionally lethal mutant of Escherichia coli lacking phosphatidylglycerol in vivo at 42 degrees C has been previously isolated by two-stage mutagenesis (M. Nishijima and C. R. H. Raetz, J. Biol. Chem. 254:7837-7844, 1979). In the first step (designated pgsA444) the phosphatidylglycerophosphate synthetase is partially inactivated, but the resulting strain continues to make about two-thirds of the normal level of phosphatidylglycerol and is not temperature sensitive. The second lesion, termed pgsB1, causes temperature-sensitive growth and phosphatidylglycerol synthesis in strains harboring pgsA444. The pgsA locus appears to be the structural gene for the synthetase and maps near min 42. In the present study we mapped the pgsB1 mutation and characterized its interaction with pgsA444 by genetic and biochemical methods. Unexpectedly, pgsB1 was not a second lesion in the pgsA structural gene, but rather mapped at a distinct site near minute 4. P1 vir-mediated contransduction suggested the gene order pantonA-dapD-pgsB-dnaE (clockwise). Independent evidence for the genetic mapping was provided by the identification of two hybrid ColE1 plasmids (pLC26-43 and pLC34-20. L. Clarke and J. Carbon, Cell 9:91-99, 1976) which both carry pgsB+ and dnaE+. Introduction of either the pgsA+ or the pgsB+ gene (via episomes, hybrid plasmids or P1 vir transduction) suppressed the temperature sensitivity of the double mutant (pgsA444 pgsB1) and restored normal levels of phosphatidylglycerol at 42 degrees C. In addition, strains with the pgsA+ pgsB1 genotype produced a novel lipid (X) at all temperatures, whereas the double mutant (pgsA444 pgsB1) contained two unusual lipids (X and Y) after 3 h at 42 degrees C. Both X and Y are precursors of lipopolysaccharide, and introduction of pgsB+ into the double mutant caused the disappearance of X and Y. Although the biochemical basis of the pgsB1 lesion is unknown, its existence suggests a previously unrecognized link between lipopolysaccharide and phosphatidylglycerol syntheses in E. coli.  相似文献   

3.
An acidic-phospholipid deficiency caused by the pgsA3 allele that encodes a defective phosphatidylglycerophosphate synthase in Escherichia coli is lethal. The only known mutations that suppress this lethality fully have been related to the major outer-membrane lipoprotein. We isolated a Bacillus subtilis chromosomal locus that suppresses the lethality when harbored in a low copy-number plasmid, without restoring the synthase activity or phospholipid composition to normal. The locus was first recognized to suppress the conditional lethality of E. coli YA5512 (pgsA3) that harbored an unidentified mutation(s), allowing its growth in LB medium but not in media of lower osmolarities. The locus was then found to suppress the lethality of pgsA3 in wild-type E. coli W3110. This locus, named ypoP in the database, had 37% nucleotide identity with the E. coli mprA gene, but the amplification of mprA had no suppressive effect. Plasmid pPOP1 containing ypoP completely prevented the decrease in the amount of a porin protein, OmpF, in the outer membrane and also cell mucoidy caused by pgsA3. The mechanisms underlying these unusual effects are discussed in relation to a putative stress signal(s) generated by the acidic-phospholipid deficiency.  相似文献   

4.
Phosphatidylinositol, a phospholipid of ice-nucleating bacteria.   总被引:6,自引:2,他引:4       下载免费PDF全文
The nature of the phospholipids of the various bacteria that have ice nucleation activity in supercooled water has been determined. The seven bacteria studied included Pseudomonas syringae, Erwinia herbicola, three Escherichia coli K-12 strains that are phenotypically Ice+ because they contain plasmids with different amounts of either P. syringae or E. herbicola cloned DNA, and two E. coli K-12 strains without cloned ice gene DNA. All five Ice+ bacterial strains contained small amounts (0.1 to 1.0% of the total phospholipids) of phosphatidylinositol (PI), a phospholipid not previously detected in E. coli, Pseudomonas, or Erwinia species. The Ice- E. coli strains also contained trace level of PI that amounted to 2 to 30% of the level found in the Ice+ E. coli strains. Extracts of Ice+ strains contained low but measurable activities of PI synthase, while the activities in Ice- strains amounted to only 8 to 12% or less of that found in extracts of Ice+ bacteria. The functioning of the ice gene apparently increased both the PI synthase activity and the PI content of Ice+ strains from low endogenous levels. The relative ice nucleation activity at -4 degrees C or above (class A nucleation activity) of all Ice+ strains was found to be proportional to their PI content. The addition of myo-inositol (5 x 10(-4) M) to synthetic culture media increased the class A nucleation activity of both Ice+ E. coli strains and P. syringae up to sevenfold but had no stimulating effect on ice nucleation at lower temperatures (class B and class C nucleation activities). If these cells after fusion with PI vesicles were incubated with an energy source, the class A nucleation activity increased 70-fold over that present before fusion. These results indicate that PI plays an important role in ice nucleation at warm temperatures and is a likely precursor or component of the class A structure.  相似文献   

5.
Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and CFA synthase activity. Subsequent manipulation of the cfa locus, facilitated by the insertion of pLC18-11 into a bacteriophage lambda vector, allowed genetic and physiological studies of CFA synthase in E. coli. Overproduction of this enzyme via multicopy cfa plasmids caused abnormally high levels of CFA in membrane phospholipid but no discernable growth perturbation. Infection with phage lambda derivatives bearing cfa caused transient overproduction of the enzyme, although pL-mediated expression of cfa could not be demonstrated in plasmids derived from such phages. CFA synthase specific activities could be raised to very high levels by using cfa runaway-replication plasmids. A variety of physiological factors were found to modulate the levels of CFA synthase in normal and gene-amplified cultures. These studies argue against several possible mechanisms for the temporal regulation of CFA formation.  相似文献   

6.
7.
We have constructed derivatives of Escherichia coli that can be used for the rapid identification of recombinant plasmids encoding DNA restriction enzymes and methyltransferases. The induction of the DNA-damage inducible SOS response by the Mcr and Mrr systems, in the presence of methylated DNA, is used to select plasmids encoding DNA methyltransferases. The strains of E. coli that we have constructed are temperature-sensitive for the Mcr and Mrr systems and have been further modified to include a lacZ gene fused to the damage-inducible dinD locus of E. coli. The detection of recombinant plasmids encoding DNA methyltransferases and restriction enzymes is a simple, one step procedure that is based on the induction at the restrictive temperature of the lacZ gene. Transformants encoding DNA methyltransferase genes are detected on LB agar plates supplemented with X-gal as blue colonies. Using this method, we have cloned a variety of DNA methyltransferase genes from diverse species such as Neisseria, Haemophilus, Treponema, Pseudomonas, Xanthomonas and Saccharopolyspora.  相似文献   

8.
In order to determine if the major acidic phospholipids of Escherichia coli are essential to the organism, we constructed a null allele (pgsA30) of the pgsA gene thus rendering the organism incapable of synthesizing phosphatidylglycerol or cardiolipin. In strains carrying the pgsA30 allele cell viability, synthesis of gene product and the ability to synthesize the two major acidic phospholipids were dependent on the presence of a functional copy of the pgsA gene carried on a plasmid which was temperature-sensitive for replication. Growth ceased at the temperature restrictive for plasmid replication when the acidic phospholipid content dropped to about 10% of wild type levels which is slightly higher than the level reported in cells carrying the pgsA3 allele in a genetic background derived from strain SD12; the latter cells, which are capable of synthesizing low levels of acidic phospholipids, were previously shown to have no abnormal growth phenotype (Miyazaki, C., Kuroda, M., Ohta, A., and Shibuya, I. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 7530-7534). The pgsA30 allele, unlike the pgsA3 allele, could not support growth in strain SD12. Neither allele could support growth in two other independently derived strains of E. coli. Therefore, there is a direct dependence of cell viability on a functional pgsA gene product. Strain SD12 appears to contain a suppressor which allows cells with a reduced capability to synthesize acidic phospholipid (pgsA3 allele) to grow, but cannot support growth in cells with a complete lack of synthetic capability (pgsA30 allele).  相似文献   

9.
The possible participation of restriction endonuclease EcoRI in recombination of compatible nonhomologous plasmids in E. coli cells has been studied. To study the process, plasmids RP4 and R245 have been transferred by conjugation into the recipient cells of E. coli harbouring one of isogenic plasmids, pSA14 and pSA25, different for the genes coding restriction endonuclease EcoRI. The genetic analysis of transconjugant phenotypes, coded by the plasmids, has permitted to register the recombinant plasmids after compatibility of parent plasmids in E. coli cells. Recombination of plasmid RP4 with the plasmid pSA14, carrying EcoRI genes, has been registered in E. coli cells, producing the restriction endonuclease, while plasmid recombination has not been found in the cells harbouring plasmid pSA25, isogenic for all genes, except for EcoRI genes, with plasmid pSA14. Restriction endonuclease EcoRI is concluded to stimulate site specific recombination of nonhomologous compatible plasmids in vivo. EcoRI-mediated recombination of plasmid R245 with plasmid pSA14 is discussed.  相似文献   

10.
DNA fragments of plasmid pSG1912 isolated from Streptomyces globisporus 1912 have been cloned into vector pUC19 in the E. coli cells. Stability of inheritance of hybrid derivatives in enterobacteria has been studied. The clones where recombinant plasmids are stably inherited have been chosen. The detailed restriction maps of cloned DNA fragments of pSG1912 have been constructed.  相似文献   

11.
The cls gene responsible for cardiolipin synthesis in Escherichia coli K-12 was cloned in a 5-kilobase-pair DNA fragment inserted in a mini-F vector, pML31, and then subcloned into a 2.0-kilobase-pair fragment inserted in pBR322. The initial selection of the gene was accomplished in a cls pss-1 double mutant that had lesions in both cardiolipin and phosphatidylserine synthases and required either the cls or the pss gene product for normal growth at 42 degrees C in a broth medium, NBY, supplemented with 200 mM sucrose. The cloned gene was identified as the cls gene by the recovery and amplification of both cardiolipin and cardiolipin synthase in a cls mutant as well as by the integration of a pBR322 derivative into its genetic locus at 27 min on the chromosome of a polA1 mutant. The maxicell analysis indicated that a protein of molecular weight 46,000 is the gene product. The cls gene is thus most likely the structural gene coding for cardiolipin synthase. Hybrid plasmids of high copy numbers containing the cls gene were growth inhibitory to pss-I mutants under the above selective conditions, whereas they inhibited neither the growth of pss-I mutants at 30 degrees C nor that of pss+ strains at any temperature. Amplification of cardiolipin synthase activity was observed, but was not proportional to the probable gene dosage (the enzyme activity was at most 10 times that in wild-type cells), and cardiolipin synthesis in vivo was at the maximum 1.5 times that in wild-type strains, implying the presence in E. coli cells of a mechanism that avoids cardiolipin overproduction, which is possibly disadvantageous to proper membrane functions.  相似文献   

12.
We have isolated three mutants of Escherichia coli which have elevated levels of the phospholipid synthetic enzyme phosphatidylserine synthase. One of these strains carries a mutation, designated pssR1, which maps near minute 84 of the chromosome, distinct from the synthase structural gene (pss) at minute 56. The pssR1 mutation causes selective overproduction of phosphatidylserine synthase, since the levels of six other lipid synthetic enzymes are unaltered. The specific activity of the synthase in crude cell extracts of mutants harboring pssR1 is about five times greater than wild type. The synthase can also be overproduced 10-fold in wild type strains with hybrid ColE1 plasmids carrying the synthase structural gene (pss). A pssR1 mutant harboring such a pss plasmid overproduces the synthase about 50-fold. This multiplicative interaction of pssR1 and cloned pss demonstrates that pssR1 is trans-acting. The synthase has been purified in parallel from pssR1 and pssR+ strains. The pssR1 mutant yields more total synthase protein than pssR+, but the pure enzyme has the same specific activity in both cases. Therefore, pssR1 acts by increasing the amount of the normal protein, not by activating the enzyme. The discovery of pssR shows that there are regulatory loci which control the production of enzymes involved in membrane lipid synthesis.  相似文献   

13.
IlvHI locus of Salmonella typhimurium.   总被引:8,自引:5,他引:3       下载免费PDF全文
In Escherichia coli K-12, the ilvHI locus codes for one of two acetohydroxy acid synthase isoenzymes. A region of the Salmonella typhimurium genome adjacent to the leucine operon was cloned on plasmid pBR322, yielding plasmids pCV47 and pCV49 (a shortened version of pCV47). This region contains DNA homologous to the E. coli ilvHI locus, as judged by hybridization experiments. Plasmid pCV47 did not confer isoleucine-valine prototrophy upon either E. coli or S. typhimurium strains lacking acetohydroxy acid synthase activity, suggesting that S. typhimurium lacks a functional ilvHI locus. However, isoleucine-valine prototrophs were readily isolated from such strains after mutagenesis with nitrosoguanidine. In one case we found that the Ilv+ phenotype resulted from an alteration in bacterial DNA on the plasmid (new plasmid designated pCV50). Furthermore, a new acetohydroxy acid synthase activity was observed in Ilv+ revertants; this enzyme was similar to E. coli acetohydroxy acid synthase III in its lack of activity at low pH. This new activity was correlated with the appearance in minicells of a new polypeptide having an approximate molecular weight of 61,000. Strains carrying either pCV49 or pCV50 produced a substantial amount of ilvHI-specific mRNA. These results, together with results from other laboratories, suggest that S. typhimurium has functional ilvB and ilvG genes and a cryptic ilvHI locus. E. coli K-12, on the other hand, has functional ilvB and ilvHI genes and a cryptic ilvG locus.  相似文献   

14.
Glutamic acid is synthesized in enteric bacteria by either glutamate dehydrogenase or by the coupled activities of glutamate synthase and glutamine synthetase. A hybrid plasmid containing a fragment of the Salmonella typhimurium chromosome cloned into pBR328 restores growth of glutamate auxotrophs of S. typhimurium and Escherichia coli strains which have mutations in the genes for glutamate dehydrogenase and glutamate synthase. A 2.2-kilobase pair region was shown by complementation analysis, enzyme activity measurements, and the maxicell protein synthesizing system to carry the entire glutamate dehydrogenase structural gene, gdhA. Glutamate dehydrogenase encoded by gdhA carried on recombinant plasmids was elevated 5- to over 100-fold in S. typhimurium or E. coli cells and was regulated in both organisms. The gdhA promoter was located by recombination studies and by the in vitro fusion to, and activation of, a promoter-deficient galK gene. Additionally, S. typhimurium gdhA DNA was shown to hybridize to single restriction fragments of chromosomes from other enteric bacteria and from Saccharomyces cerevisiae.  相似文献   

15.
Four small cryptic plasmids were isolated from Lactobacillus casei strains, and restriction endonuclease maps of these plasmids were constructed. Three of the small plasmids (pLZ18C, pLZ19E, and pLZ19F1; 6.4, 4.9, and 4.8 kilobase pairs, respectively) were cloned into Escherichia coli K-12 by using pBR322, pACYC184, and pUC8 as vectors. Two of the plasmids, pLZ18C and pLZ19E, were also cloned into Streptococcus sanguis by using pVA1 as the vector. Hybridization by using nick-translated cloned 32P-labeled L. casei plasmid DNA as the probe revealed that none of the cryptic plasmids had appreciable DNA-DNA homology with the large lactose plasmids found in the L. casei strains, with chromosomal DNAs isolated from these strains. Partial homology was detected among several plasmids isolated from different strains, but not among cryptic plasmids isolated from the same strain.  相似文献   

16.
Cloning of a yolk protein gene family from Caenorhabditis elegans   总被引:12,自引:0,他引:12  
A novel family of large, imperfectly repeated DNA sequences has been found in Escherichia coli. Two members of this family, rhsA and rhsB, occur as direct repeats, flanking the pit glyS xyl segment of the chromosome. Unequal sister-chromatid crossing over between rhsA and rhsB accounts for the frequent tandem duplication of the glyS locus that has been observed by various workers. This unequal recombination is recA-dependent. The rhsA locus is operationally defined as the segment between xyl and mtl that is repeated at other chromosomal locations. Using this definition, rhsA extends minimally 5500 base-pairs; 3800 base-pairs of rhsA are sufficiently homologous to rhsB to form an S1 nuclease-resistant heteroduplex with it. The rhsA sequence also exhibits internal repetition. At least one additional rhs sequence occurs in the E. coli chromosome unlinked to either rhsA or rhsB. Southern analysis of restriction digests of genomic DNA from E. coli strains C and B/5 showed that both of these strains have rhs hybridizable patterns similar to strain K-12, but the rhs sequence is absent in Salmonella typhimurium. The function of the rhs sequences has not been discovered. In the course of this work we developed a technique, termed "transductional walking", by which chromosomal DNA adjacent to a previously cloned DNA segment can be cloned through genetic procedures.  相似文献   

17.
Four small cryptic plasmids were isolated from Lactobacillus casei strains, and restriction endonuclease maps of these plasmids were constructed. Three of the small plasmids (pLZ18C, pLZ19E, and pLZ19F1; 6.4, 4.9, and 4.8 kilobase pairs, respectively) were cloned into Escherichia coli K-12 by using pBR322, pACYC184, and pUC8 as vectors. Two of the plasmids, pLZ18C and pLZ19E, were also cloned into Streptococcus sanguis by using pVA1 as the vector. Hybridization by using nick-translated cloned 32P-labeled L. casei plasmid DNA as the probe revealed that none of the cryptic plasmids had appreciable DNA-DNA homology with the large lactose plasmids found in the L. casei strains, with chromosomal DNAs isolated from these strains. Partial homology was detected among several plasmids isolated from different strains, but not among cryptic plasmids isolated from the same strain.  相似文献   

18.
Recent aspects of genetic manipulation in Bacillus thuringiensis   总被引:3,自引:0,他引:3  
The conjugative plasmid pAM beta 1 was transferred from Streptococcus faecalis to several strains of Bacillus thuringiensis by a filter-mating process. From a transconjugant clone of B. thuringiensis a hybrid plasmid resulting from an in vivo insertion into pAM beta 1 of a 3 Md DNA sequence was isolated. This 3 Md DNA molecule (Th sequence) is related to several host plasmids found in different serotypes of B. thuringiensis. A reciprocal conjugation-like process involving the transfer of pAM beta 1 from B. thuringiensis to S. faecalis was also demonstrated. The comparison of the restriction maps of the crystal genes from plasmid and chromosomal origins of different serotypes, six of which having been cloned in E. coli, revealed the existence of two classes of genes which are very similar in the map corresponding to the N-terminal part of the protein, and which differ essentially in the 3' region. The presence of the transposon-like Th sequence was found in several cases associated with the crystal gene in the same host plasmid, and a model for their structural organization is proposed.  相似文献   

19.
Summary Two spore genes, spoOB and spoIIG have been cloned from the B. subtilis genome library, constructed by ligating Sau3A partially digested DNA to the dephosphorylated pHV33 plasmid vector at its BamH1 site.An hybrid plasmid pGsOB2, carrying a 1.7 Kb insert of B. subtilis DNA amplifiable in E. coli was cloned. This recombinant plasmid was capable of transforming the appropriate B. subtilis Rec+ and Rec- recipients to Spo+ at very high efficiency. The pGsOB2 was further subcloned and four hybrid plasmids, pGsOB8, pGsOB9, pGsOB10 and pGsOB11 were selected and their restriction enzyme maps established. The four subcloned hybrid plasmids retained their entire transforming activity in both Rec+ and Rec- recipients although two of them carry the insert in an inverse orientation, indicating thus, that the spoOB gene in these plasmids is being transcribed by the B. subtilis RNA polymerase using an internal promotor of the cloned DNA fragment. The adjacent genes spoIVF and pheA, mapped respectively to the right and left of the spoOB locus, that normally show 90% cotransformation, are absent on the cloned DNA fragments. The cloned hybrid plasmids have been expressed in E. coli minicells and it was shown that the spoOB locus encoded a polypeptide of 24 K.We have also cloned the spoIIG gene in two hybrid plasmids, pGsIIG24 and pGsIIG26, carrying respectively inserts of 2 and 3 Kb. From the transforming activity and the endonuclease cleavage maps it was shown that these two hybrid plasmids do not carry the entire spoIIG locus. The use of these plasmids for further cloning of this gene is discussed.  相似文献   

20.
Y Beck  W F Coetzee 《Gene》1983,21(1-2):25-31
The gene for phenylalanine deaminase (PAD) of Proteus morganii strain 2815 has been isolated on a 6.3-kb HindIII restriction fragment and cloned within RP4-prime plasmids, pYB2321 and pYB2322, in both orientations. Expression of the cloned gene in Escherichia coli strains was comparable to that in P. morganii 2815. The hybrid plasmids mobilized the 2815 chromosome with trajectories in reverse directions from an origin between ser-2 and ade-1, suggesting the map location of the PAD gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号