首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Chory J  Nagpal P  Peto CA 《The Plant cell》1991,3(5):445-459
The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described. Recessive mutations in the DET2 gene uncouple light signals from a number of light-dependent processes. det2 mutations result in dark-grown Arabidopsis thaliana seedlings with many characteristics of light-grown plants, including hypocotyl growth inhibition, cotyledon expansion, primary leaf initiation, anthocyanin accumulation, and derepression of light-regulated gene expression. In contrast to these morphological and gene expression changes, however, the chloroplast development program is not initiated in the dark in det2 mutants, suggesting that light-regulated gene expression precedes the differentiation of etioplasts to chloroplasts. det2 mutations thus reveal at least two classes of downstream light-regulated responses that differ in their timing and control mechanisms. Homozygous det2 mutations also affect photoperiodic responses in light-grown plants, including timing of flowering, dark adaptation of gene expression, and onset of leaf senescence. The phenotype of det1 det2 double mutants is additive, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes. Furthermore, these pathways are not utilized solely during early seedling development but must also be required to regulate different aspects of the light developmental program during later stages of vegetative growth.  相似文献   

2.
When grown in the absence of light, Arabidopsis thaliana deetiolated (det) mutants develop many of the characteristics of light-grown plants, including the development of leaves and chloroplasts, the inhibition of hypocotyl growth elongation, and elevated expression levels of light-regulated genes. We show here that dark-grown wild-type seedlings exhibit similar phenotypic traits if any one of a variety of cytokinins are present in the growth medium. We further show that the striking phenotype of det mutants is unlikely to be caused by different levels of cytokinins in these mutants. The three major Arabidopsis cytokinins, zeatin, zeatin riboside, and isopentenyladenosine, accumulate to similar levels in wild-type seedlings grown in either the light or the dark. There is no consistently different pattern for the levels of these cytokinins in wild-type versus det1 or det2 mutants. However, det1 and det2 have an altered response to cytokinin in a detached leaf senescence assay and in tissue culture experiments. A model is proposed in which light and cytokinins act independently or sequentially through common signal transduction intermediates such as DET1 and DET2 to control the downstream light-regulated responses.  相似文献   

3.
《Cell》1994,78(1):109-116
The mechanisms by which plants integrate light signals to modify endogenous developmental programs are largely unknown. One candidate for a signal transduction component that may integrate light with developmental pathways is the Arabidopsis DET1 gene product. Here we report the positional cloning of the DET1 locus and show that DET1 is a unique nuclear-localized protein. An analysis of a number of det1 mutants indicates that mutants with partial DET1 activity develop as light-grown plants in the dark. det1 null mutants share this phenotype, but also display severe defects in temporal and spatial regulation of gene expression. These results suggest that DET1 acts in the nucleus to control the cell type-specific expression of light-regulated promoters.  相似文献   

4.
N Wei  X W Deng 《The Plant cell》1992,4(12):1507-1518
We report here the identification and characterization of a new Arabidopsis light-regulatory locus, COP9, mutation that leads to a constitutive photomorphogenic phenotype. Dark-grown cop9 seedlings exhibit many morphological characteristics of light-grown seedlings, including short hypocotyls and open and enlarged cotyledons with cell-type and chloroplast differentiation. Furthermore, the cop9 mutation leads to high-level expression of light-inducible genes in the absence of light, probably by altering the promoter activities of these genes. These properties imply that the mutation in the COP9 locus uncouples the light/dark signals from morphogenesis and light-regulated gene expression. In addition, light-grown cop9 mutants are severely dwarfed and are unable to reach maturation and flowering. This adult-lethal phenotype indicates that the COP9 locus also plays a critical role for normal development of the light-grown plant. Similar to cop1 mutants, but not det1, the cop9 mutants show (1) no effect on the phytochrome control of seed germination and (2) deficiency in the dark-adaptive change of expression of light-regulated genes. Our results suggest that the cop9 and cop1 mutations result in the same range of phenotypes and therefore COP9 and COP1 loci may encode closely related components in the same regulatory pathway.  相似文献   

5.
S F Kwok  B Piekos  S Misera    X W Deng 《Plant physiology》1996,110(3):731-742
Two genetic screens, one for mutations resulting in photomorphogenic development in darkness and the other for mutants with fusca phenotype, have thus far identified six pleiotropic Arabidopsis COP/DET/FUS genes. Here, we characterized representative mutants that define four additional pleiotropic photomorphogenic loci and a null mutant allele of the previously defined DET1 locus. Dark-grown seedlings homozygous for these recessive mutations exhibit short hypocotyls and expanded cotyledons and are lethal before reaching reproductive development. Dark-grown mutant seedlings also display characteristic photomorphogenic cellular differentiation and elevated expression of light-inducible genes. In addition, analyses of plastids from dark-grown mutants reveal partial chloroplast differentiation and absence of etioplast development. Root vascular bundle cells of light-grown mutant seedlings develop chloroplasts, suggesting that these FUS gene products are important for suppression of chloroplast differentiation in light-grown roots. Double-mutant analyses indicate that these pleiotropic cop/det/fus mutations are epistatic to mutations in phytochromes, a blue-light photoreceptor, and a downstream regulatory component, HY5. Therefore, there is a complement of at least 10 essential and pleiotropic Arabidopsis genes that are necessary for repression of photomorphogenic development.  相似文献   

6.
7.
8.
9.
R Mayer  D Raventos    N H Chua 《The Plant cell》1996,8(11):1951-1959
Genetic studies using Arabidopsis offer a promising approach to investigate the mechanisms of light signal transduction during seedling development. Several mutants, called det/cop, have been isolated based on their deetiolated/constitutive photomorphogenic phenotypes in the dark. This study examines the specificity of the det/cop mutations with respect to their effects on genes regulated by other signal transduction pathways. Steady state mRNA levels of a number of differently regulated gene sets were compared between mutants and the wild type. We found that det2, cop2, cop3, and cop4 mutants displayed a gene expression pattern similar to that of the wild type. By contrast, det1, cop1, and cop9 mutations exhibited pleiotropic effects. In addition to light-responsive genes, genes normally inducible by plant pathogens, hypoxia, and developmental programs were inappropriately expressed in these mutants. Our data provide evidence that DET1, COP1, and COP9 most likely act as negative regulators of several sets of genes, not just those involved in light-regulated seedling development.  相似文献   

10.
A. E. Pepper  J. Chory 《Genetics》1997,145(4):1125-1137
Light regulation of seedling morphogenesis is mediated by photoreceptors that perceive red, far-red, blue and UV light. Photomorphogenetic mutants of Arabidopsis have identified several of the primary photoreceptors, as well as a set of negative regulators of seedling photomorphogenesis, including DET1, that appear to act downstream of the photoreceptors. To study the regulatory context in which DET1 acts to repress photomorphogenesis, we used a simple morphological screen to isolate extragenic mutations in six loci, designated ted (for reversal of the det phenotype), that partially or fully suppress the seedling morphological phenotype of det1-1. Genetic analyses indicate that mutations in the ted4 and ted5 loci identify new alleles of the previously described photomorphogenetic loci hy1 and hy5, respectively. Molecular analyses indicate that the ted mutations partially suppress the dark-grown gene expression phenotype of det1-1, and that the mechanism of suppression does not involve direct remediation of the splicing defect caused by the det1-1 mutation. The ted mutations also partially suppress the light-grown morphological phenotype of mature det1-1 plants, and ted1 and ted2 suppress a daylength insensitivity phenotype of det1. TED1, TED2 and TED3 are newly described genes, whose function appears closely associated with that of DET1. In addition, alleles of ted1 are associated with a moderate late-flowering phenotype, suggesting that TED1 plays a role in the pathways that regulate both seedling morphogenesis and the initiation of flowering.  相似文献   

11.
In Arabidopsis thaliana, de-etiolated 1 mutants (det1) grown in the dark resemble light-grown wild-type seedlings. Arabidopsis DET1 encodes a 62 kD protein, which is a negative regulator of light signaling. UV-damaged DNA-binding protein 1 (DDB1) was initially identified due to its role in human DNA damage repair. Arabidopsis has two DDB1 homologs: DDB1A and DDB1B. DDB1A mutation enhances det1 mutant phenotypes. In this study, we generated Arabidopsis lines that overexpress DDB1A-3HA in wild-type, det1, as well as Myc-DET1 or GFP-DET1 rescued genetic backgrounds. DDB1A-3HA overexpression resulted in decreased apical hook formation in wild-type dark-grown seedlings, and enhanced det1 small rosette and early flowering time phenotypes. In the Myc-DET1 background, DDB1A-3HA overexpression resulted in decreased rescue of dark- and light-grown hypocotyl length, light-grown anthocyanin and chlorophyll levels, adult height and stem number phenotypes. This result is consistent with the decreased levels of Myc-DET1 protein detected in the DDB1A-3HA overexpression line. The GFP-DET1 DDB1A-3HA double overexpression line exhibited increased rescue of dark and light-grown hypocotyl length and light-grown chlorophyll level phenotypes relative to GFP-DET1 alone, despite the fact that GFP-DET1 protein also decreased in the double overexpression line. In addition, increased DET1 resulted in decreased DDB1A-3HA levels due to proteasomal degradation. Overall, DDB1A-3HA overexpression affected phenotypes in a variety of DET1 backgrounds, reduced epitope-tagged DET1 levels, and, correlatively, in general dampened the rescue of det1 mutants by the DET1–DDB1A complex.  相似文献   

12.
13.
14.
J Chory  C Peto  R Feinbaum  L Pratt  F Ausubel 《Cell》1989,58(5):991-999
The signal transduction pathways that lead to chloroplast biogenesis in plants are largely unknown. We describe here the identification and initial characterization of a novel genetic locus which fits the criteria of a regulatory gene located in a central pathway controlling light-mediated development. In the absence of light, these Arabidopsis thaliana mutants, designated det1 (de-etiolated 1), constitutively display many characteristics that are light-dependent in wild-type plants, including leaf and chloroplast development, anthocyanin accumulation, and accumulation of mRNAs for several light-regulated nuclear and chloroplast genes. The switch between dark and light growth modes thus appears to be a programmed step in a developmental pathway that is defined by det1. We suggest a model where the primary role of light on gene expression is mediated by the activation of leaf development. Further, the recessive nature of the det1 mutation implies that there is negative growth control on leaf development in dicotyledonous plants in the absence of light.  相似文献   

15.
16.
17.
18.
19.
20.
Microarray gene expression profiling was used to examine the role of pleiotropic COP/DET/FUS loci as well as other partially photomorphogenic loci during Arabidopsis seedling development and genome expression regulation. Four types of lethal, pleiotropic cop/det/fus mutants exhibit qualitatively similar gene expression profiles, yet each has specific differences. Mutations in COP1 and DET1 show the most similar genome expression profiles, while the mutations in the COP9 signalosome (CSN) and COP10 exhibit increasingly diverged genome expression profiles in both darkness and light. The genome expression profiles of the viable mutants of COP1 and DET1 in darkness mimic those of the physiological light-regulated genome expression profiles, whereas the genome expression profiles of representative lethal mutants belong to another clade and significantly diverge from the normal light control of genome expression. Instead, these lethal pleiotropic mutants show genome expression profiles similar to those from seedlings growth under high light intensity stress. Distinct lethal pleiotropic cop/det/fus mutants also result in distinct expression profiles in the small portion of genes examined and exhibit similar relatedness in both light and darkness. The partial cop/det/fus mutants affected expression of both light regulated and non-light regulated genes. Our results suggest that pleiotropic COP/DET/FUS loci control is largely overlapping but also has separable roles in plant development. The partially photomorphogenic loci regulate a subset of photomorphogenic responses as well as other non-light regulated processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号