首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome b5 has been genetically engineered to afford a fluorescent derivative capable of monitoring its association with cytochrome P-450cam from Pseudomonas putida [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. In the mutant cytochrome b5, threonine is replaced by a cysteine at position 65 (T65C) and has been labeled with the environmentally sensitive fluorophore acrylodan. In this paper, the physiological P-450cam reductant putidaredoxin, an Fe2S2.Cys4 iron-sulfur protein, is shown to competitively inhibit the cytochrome b5 association, suggesting that cytochrome b5 and putidaredoxin bind to a similar site on the cytochrome P-450cam surface. Since the crystal structures for both cytochrome b5 and cytochrome P-450cam have been solved to high resolution, the complex has been computer modeled, and a good fit was found on the proximal surface of nearest approach to the P-450cam heme prosthetic group. The proposed model includes electrostatic contacts between conserved cytochrome b5 carboxylates Glu-44, Glu-48, Asp-60, and the exposed heme propionate with cytochrome P-450cam basic residues Lys-344, Arg-72, Arg-112, and Arg-364, respectively. Putidaredoxin has similarly been shown to contain a carboxylate-based binding surface, and the current results suggest that if the model is correct, then it also interacts at the proposed site, probably utilizing similar P-450cam electrostatic contacts.  相似文献   

2.
The cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc comprises three consecutive monooxygenase reactions (22R-hydroxylation, 20S-hydroxylation, and C(20)-C(22) bond scission) that produces pregnenolone. The electron equivalents necessary for the oxygen activation are supplied from a 2Fe-2S type ferredoxin, adrenodoxin. We found that 1:1 stoichiometric binding of oxidized adrenodoxin to oxidized cytochrome P450scc complexed with cholesterol or 25-hydroxycholesterol caused shifts of the high-spin EPR signals of the heme moiety at 5 K. Such shifts were not observed for the low-spin EPR signals. Ligation of CO or NO to the reduced heme of cytochrome P450scc complexed with reduced adrenodoxin and various steroid substrates did not cause any change in the axial EPR spectrum of the reduced iron-sulfur center at 77 K. These results are in remarkable contrast to those obtained for the cytochrome P450cam-d-camphor-putidaredoxin ternary complex, suggesting that the mode of cross talk between adrenodoxin and cytochrome P450scc is very different from that in the Pseudomonas system. The difference may be primarily due to the location of the charged amino acid residues of the ferredoxins important for the interaction with the partner cytochrome P450.  相似文献   

3.
Changes in proton concentration during the binding of dioxygen, carbon monoxide, and for the exchange of dioxygen by carbon monoxide, at ferrous-cytochrome P-450cam were measured by direct titration. Insufficient proton release was observed to support protonation-deprotonation of an axial cysteinyl sulfur donor as a mechanism for generation of hyper spectra in only the carbonylated ferrous state. Measurement of the P12 value for CO binding as a function of pH (the carbon monoxide Bohr effect) confirms the direct titration data.  相似文献   

4.
Tetreau C  Tourbez M  Lavalette D 《Biochemistry》2000,39(46):14219-14231
Photodissociation of (CO)P-450(cam)(substrate) complexes was found to trigger a conformational relaxation process that interferes with ligand rebinding at temperatures as low as 140 K even though the protein conformational substates (CS(1)) remain frozen. To analyze the rebinding and relaxation kinetics, we developed a model that takes the distribution of relaxation rates explicitly into account and in which rebinding and relaxation rates are connected by a linear free energy relation. In all complexes heme relaxation occurs first and is probably faster than 100 ns even at 77 K. This is the only process found in substrate-free P-450(cam). Above 140 K and in the presence of a substrate, this initial, fast rebinding state (P) progressively relaxes to another state (P degrees ) in which rebinding is slower. The relaxation rate is independent of solvent rigidity and is governed by the protein's internal dynamics. Rebinding enthalpies in P and P degrees as well as the enthalpy shift brought about by relaxation correlate with the substrate propensity to block access to the iron site. In P degrees the barrier is higher because the substrate is closer to the heme normal and exerts more steric repulsion for CO binding. The relaxation process implies the return of substrate and heme to their ligand-free positions in which access to the heme is reduced.  相似文献   

5.
Careful titration of oxidized cytochrome P-450cam from Pseudomonas putida with pyridine revealed deviations of the Eadie plot from linearity in the substrate-bound as well as in the substrate-free protein. A binding model which assumes two binding sites for pyridine--the iron and the camphor binding site--is able to describe completely the nonlinear Eadie plot.  相似文献   

6.
Oxy-ferrous substrate-bound cytochrome P-450cam (mrsO2) autooxidizes in the absence of its specific effector protein, putidaredoxin, without hydroxylating the substrate, camphor. The autooxidation is first order with an activation energy of 17 kcal mol-1 at 25 degrees, pH 7.0. Substrate removal and low pH accelerate the reaction. The product, 5-exo-OH camphor, and a nonhydroxylated pseudosubstrate, norcamphor, stabilize the complex in a manner similar to camphor. Increased oxidation rate of mrsO2 and substrate hydroxylation are induced by putidaredoxin, rebredoxin, cytochrome b5, and the apoproteins of the latter two. Dihydrolipoic acid and other dithiols also replace putidaredoxin as effector molecules, but 1000-fold higher concentrations are required. Effector molecules do not increase the autooxidation rate of mrsO2 unless camphor, norcamphor, or another pseudosubstrate is present. Kinetic evidence is presented showing that an active complex between mrsO2 and effector is a required intermediate in mixed function oxidation.  相似文献   

7.
The 58-kDa complex formed between the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), and cytochrome P450cam (CYP101) from the bacterium Pseudomonas putida has been investigated by high-resolution solution NMR spectroscopy. Pdx serves as both the physiological reductant and effector for CYP101 in the enzymatic reaction involving conversion of substrate camphor to 5-exo-hydroxycamphor. In order to obtain an experimental structure for the oxidized Pdx-CYP101 complex, a combined approach using orientational data on the two proteins derived from residual dipolar couplings and distance restraints from site-specific spin labeling of Pdx has been applied. Spectral changes for residues in and near the paramagnetic metal cluster region of Pdx in complex with CYP101 have also been mapped for the first time using 15N and 13C NMR spectroscopy, leading to direct identification of the residues strongly affected by CYP101 binding. The new NMR structure of the Pdx-CYP101 complex agrees well with results from previous mutagenesis and biophysical studies involving residues at the binding interface such as formation of a salt bridge between Asp38 of Pdx and Arg112 of CYP101, while at the same time identifying key features different from those of earlier modeling studies. Analysis of the binding interface of the complex reveals that the side chain of Trp106, the C-terminal residue of Pdx and critical for binding to CYP101, is located across from the heme-binding loop of CYP101 and forms non-polar contacts with several residues in the vicinity of the heme group on CYP101, pointing to a potentially important role in complex formation.  相似文献   

8.
P S Stayton  S G Sligar 《Biochemistry》1991,30(7):1845-1851
The carboxy-terminal tryptophan of putidaredoxin, the Fe2S2.Cys4 iron-sulfur physiological redox partner of cytochrome P-450cam, is essential for maximal biological activity [Davies, M. D., Qin, L., Beck, J. L., Suslick, K. S., Koga, H., Horiuchi, T., & Sligar, S. G. (1990) J. Am. Chem. Soc. 112, 7396-7398]. This single tryptophan-containing protein thus represents an excellent system for studying the solution dynamics of a residue directly implicated in an electron-transfer pathway. Steady-state and time-resolved measurements of the tryptophan fluorescence have been conducted across the emission spectrum as a function of redox state to probe potential structural changes which might be candidates for structural gating phenomena. The steady-state emission spectrum (lambda max = 358 nm) and anisotropy (alpha = 0.04) suggest that Trp-106 is very solvent-exposed and rotating partially free of global protein constraints. The time-resolved fluorescence kinetics for both oxidized and reduced putidaredoxin are fit best with three discrete components of approximately 5, 2, and 0.3 ns. The lifetime components were assigned to physical species with iodide ion quenching experiments, where differential quenching of the longer components was observed (k tau = 2 = 5.9 X 10(8) M-1 s-1, k tau = 5 = 1.3 X 10(8) M-1 s-1). These findings suggest that the multiexponential fluorescence decay results from ground-state conformational microheterogeneity and thus demonstrate that the essential tryptophan exists in at least two distinguishable conformations. Small differences in the relative proportions of the components between redox states were observed but not cleanly resolved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Cytochrome P-450cam reacts with phenyldiazene (PhN = NH), or less efficiently with phenylhydrazine, to give a catalytically inactive complex with an absorption maximum at 474 nm. The prosthetic group extracted anaerobically from the inactivated protein has the spectroscopic properties of a sigma phenyl-iron complex and rearranges, on exposure to air and acid, to an approximately equal mixture of the four N-phenylprotoporphyrin IX regioisomers. The crystal structure of the intact protein complex, refined at 1.9-A resolution to an R factor of 20%, confirms that the phenyl group is directly bonded through one of its carbons to the iron atom. The phenyl ring is tilted from the heme normal by about 10 degrees in the opposite direction from that in which carbon monoxide tilts when bound to P-450cam. Camphor, the natural substrate for P-450cam, is larger than a phenyl group and hydrogen bonds to Tyr 96, the only hydrophilic residue near the active site. Electron density in the active site in addition to that contributed by the phenyl group suggests that two water molecules occupy part of the camphor binding site but are not within hydrogen-bonding distance of Tyr 96. As observed in a previous crystallographic study of inhibitor-P-450cam complexes [Poulos, T.L., & Howard, A.J. (1987) Biochemistry 26, 8165-8174], there are large changes in both the atomic positions and mobilities of the residues in the proposed substrate access channel region of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
To investigate the functional and structural roles of the proximal thiolate ligand in cytochrome P450cam, we prepared the C357H mutant of the enzyme in which the axial cysteine residue (Cys357) was replaced with a histidine residue. We obtained the unstable C357H mutant by developing a new preparation procedure involving in vitro folding of P450cam from the inclusion bodies. The C357H mutant in the ferrous-CO form exhibited the Soret peak at 420 nm and the Fe-CO stretching line at 498 cm-1, indicating a neutral histidine residue as the axial ligand. However, another internal ligand is coordinated to the heme iron as the sixth ligand in the ferric and ferrous forms of the C357H mutant, suggesting the collapse of the substrate-binding site. The C357H mutant showed no catalytic activity for camphor hydroxylation and the reduced heterolytic/homolytic ratio of the O-O bond scission in the reaction with cumene hydroperoxide. The present observations indicate that the thiolate coordination in P450cam is important for the construction of the heme pocket and the heterolysis of the O-O bond.  相似文献   

12.
It was found that there were only two cysteine residues in highly purified cytochrome P-450scc molecule from bovine adrenocortical mitochondria by titration with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) in denatured conditions. Only one cysteine residue at position 303 of cytochrome P-450scc could be specifically modified with DTNB in the native state. The resulting cytochrome P-450scc-5-thio-2-nitrobenzoic acid complex (cytochrome P-450scc-TNB) showed no distinct differences in absorption spectra, cholesterol binding, or electron transferring from adrenodoxin, compared to those of untreated cytochrome P-450scc. These observations indicated that the 303rd cysteine residue does not play a role in heme binding, cholesterol (substrate) binding or adrenodoxin binding. The other cysteine residue at 461 could be modified with DTNB only in a denatured condition. These assignments of cysteine residues were made by the subsequent S-cyanylation with KCN followed by incubation in 6 M guanidine hydrochloride at alkaline pH, which causes enhanced cleavage of peptide bonds adjacent to the cyanylated cysteine residues. Analyses of fragmented polypeptides by SDS-polyacrylamide gel electrophoresis confirmed that there were only two cysteine residues in the molecule and indicated that the cleavage rate of the peptide bond between 460 and 461 becomes high only when both cysteine residues (303 and 461) are cyanylated. These results clearly established that the 461st cysteine residue in cytochrome P-450scc plays a role as the heme fifth ligand on the basis of the general agreement that a thiolated cysteine residue coordinates to the heme iron.  相似文献   

13.
The reaction of the hydrated electron with a ferrous oxygenated form of modified cytochrome P-450cam, containing 2,4-diacetyldeuteroheme, was investigated by the use of pulse radiolysis. The ferrous oxygenated form of this enzyme was reduced by hydrated electrons to form the product, which exhibits absorption maximum at 470 and 370 nm. From the spectrum obtained, the oxidation state of the product is discussed in relation to the higher oxidation states of chloroperoxidase.  相似文献   

14.
Temperature jump relaxation kinetics of the P-450cam spin equilibrium   总被引:1,自引:0,他引:1  
M T Fisher  S G Sligar 《Biochemistry》1987,26(15):4797-4803
The ferric spin-state equilibrium and relaxation rate of cytochrome P-450 has been examined with temperature jump spectroscopy using a number of camphor analogues known to induce different mixed spin states in the substrate-bound complexes [Gould, P., Gelb, M., & Sligar, S. G. (1981) J. Biol. Chem. 256, 6686]. All temperature-induced spectral changes were monophasic, and the spin-state relaxation rate reached a limiting value at high substrate concentrations. The ferric spin equilibrium constant, Kspin, is defined in terms of the rate constants k1 and k-1 via Kspin = k1/k-1 = [P-450(HS)]/[P-450(LS)] where HS and LS represent high-spin (S = 5/2) and low-spin (S = 1/2) ferric iron, respectively, and the spectrally observed spin-state relaxation rate by kobsd = k1 + k-1. A strong correlation between the fraction of high-spin species and the rate constant, k-1, is observed. For a 3 degrees C temperature jump (from 10 to 13 degrees C), the 23% high-spin tetramethylcyclohexanone complex (Kd = 45 +/- 20 microM) is characterized by a ferric spin relaxation rate of kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and camphoroquinone (75% high spin, Kd = 15 +/- 5 microM) complexes are 1430 and 346 s-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Resonance Raman detection of bound dioxygen in cytochrome P-450cam   总被引:1,自引:0,他引:1  
We have used resonance Raman spectroscopy and isotopic labeling techniques to unambiguously assign the dioxygen stretching frequency (vo-o) in the substrate-bound oxygenated complex of cytochrome P-450cam. The frequency found for Vo-o in the P-450cam system (1140 cm-1) is in remarkable agreement with recent studies of thiolate heme model compounds. The general features of the oxy-P-450cam Raman spectra are tabulated and comparisons are made with the oxy complexes of hemoglobin, myoglobin, and various model compounds. Most of the results are qualitatively explained by consideration of electron donation into the pi g (O2)/d pi (M) orbitals of the oxygenated complex (M = Fe or Co). It is also noted that the effect of the "extra" electron in the nitrogen base Co(II) oxy complexes, in some ways, parallels the effect of the lone pair electrons of thiolate in the oxy-P-450cam complex. This is evidenced by the enhanced resonance Raman activity of vo-o in both the Co(II) and P-450 systems as well as by the similarity of the vo-o frequencies.  相似文献   

16.
M D Paulsen  R L Ornstein 《Proteins》1991,11(3):184-204
The structure and internal motions of cytochrome P-450cam, a monooxygenase heme enzyme with 414 amino acid residues, with camphor bound at the active site have been evaluated on the basis of a 175-psec molecular dynamics simulation carried out at 300 K. All hydrogen atoms were explicitly modeled, and 204 crystallographic waters were included in the simulation. Based on an analysis of the time course of the trajectory versus potential energy, root mean square deviation, radius of gyration, and hydrogen bonding, the simulation was judged to be stable and representative of the average experimental structure. The averaged structural properties of the enzyme were evaluated from the final 135 psec of the simulation. The average atomic displacement from the X-ray structure was 1.39 A for all heavy atoms and 1.17 A for just C-alpha atoms. The average root-mean-square (rms) fluctuations of all heavy atoms and backbone atoms were 0.42 and 0.37 A, respectively. The computed rms fluctuations were in reasonable agreement with the experimentally determined temperature factors. All 13 segments of alpha-helix and 5 segments of beta-sheet were well preserved with the exception of the N-terminal half of helix F which alternated between an alpha-helix and a 310-helix. In addition there were in general only small variations in the relative orientation of adjacent alpha-helices. The rms fluctuations of the backbone dihedral angles in the secondary structure elements were almost uniformly smaller, with the fluctuation in alpha-helices and beta-sheets, 31 and 10% less, respectively, than those in nonsecondary structure regions. The reported crystal structure contains kinks in both helices C and I. In the simulation, both of these regions showed high mobility and large deviations from their starting positions. Since the kink in the I helix is at the oxygen binding site, these motions may have mechanistic implications.  相似文献   

17.
Metal substitution of heme proteins is widely applied in the study of biologically relevant electron transfer (ET) reactions. It has been shown that many modified proteins remain in their native conformation and can provide useful insights into the molecular mechanism of electron transfer between the native protein and its substrates. We investigated ET reactions between zinc-substituted cytochrome P450(cam) and small organic compounds such as quinones and ferrocene, which are capable of accessing the protein's hydrophobic channel and binding close to the active site, like its native substrate, camphor. Following the substitution method developed by Gunsalus and co-workers [Wagner, G. C., et al. (1981) J. Biol. Chem. 256, 6262-6265], we have identified two dominant forms of the zinc-substituted protein, F450 and F420, that exhibit different photophysical and photochemical properties. The ET behavior of F420 suggests that hydrophobic redox-active ligands are able to penetrate the hydrophobic channel and place themselves in the direct vicinity of the Zn-porphyrin. In contrast, the slower ET quenching rates observed in the case of F450 indicate that the association is weak and occurs outside of the protein channel. Therefore, we conclude that F420 corresponds to the open structure of the native cytochrome P450(cam) while F450 has a closed or partially closed channel that is characteristic of the camphor-containing cytochrome P450(cam). The existence of two distinct conformers of Zn-bound P450(cam) is consistent with the findings of Goodin and co-workers [Lee, Y.-T., et al. (2010) Biochemistry 49, 3412-3419] and has significant consequences for future electron transfer studies on this popular metalloenzyme.  相似文献   

18.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

19.
20.
A 4.27-kilobase insert from a HindIII DNA library of Pseudomonas putida carrying the CAM plasmid allowed coordinate expression of genes camD and camC under control of camR, an upstream regulator. The camC gene specifies cytochrome P-450cam, and camD specifies the 5-exo-alcohol dehydrogenase. A 1.38-kilobase deletion from the insert results in the constitutive expression of genes camC and camD; transformation in trans restores the substrate control, indicating that camR is a negative regulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号