首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of exogenous Cu(II) with stable T-state Ni(II)- and Cu(II)-reconstituted hemoglobins has been studied. The relative binding affinities for the two human hemoglobin Cu(II) binding sites are found to be reversed in these hemoglobins relative to native iron(II) hemoglobin A. Nickel hemoglobin, modified by N-ethylmaleimide (NEM), iodoacetamide, and carboxypeptidase A, is used to establish that the observed differences can be attributed to the protein quaternary conformation and not to the metal substitution. Magnetic interactions between the Cu(II) responsible for oxidation and the metal-heme center suggest that the Cu(II) is closer to the heme in T-state hemoglobin than R-state hemoglobin. This finding suggests a pathway for T-state heme oxidation which does not require the beta-93 sulfhydryl group, consistent with rapid Cu(II) oxidation for NEM-reacted deoxyhemoglobin.  相似文献   

2.
The interaction between hexacyanoferrate(III) and some copper complexes of different geometry was studied. In solution, and in the presence of coordination unsaturation of copper, 1:1 and 2:1 Cu:Fe adducts formed and were characterized by the absence of any copper electron paramagnetic resonance (EPR) signal. The magnetic susceptibility of the 1:1 adducts is essentially equal to the sum of those due to the parent compounds. Solid state studies confirm the solution data. In the light of the present results the absence of the EPR signal of [Fe(CN)6]3?-treated galactose oxidase is discussed.  相似文献   

3.
Copper(II) reacts with citrinin to form 1:1 and 1:2 chelates. The formation constants of these copper(II) chelates have been determined in the solvent 50% (v/v) dioxane-water. Citrinin in the solid state is a p-quinone methide. It may exist as an equilibrium mixture of the p-quinone and o-quinone methides in solution. The experimental evidence indicates that upon chelate formation it exists predominantly in the o-quinone form.  相似文献   

4.
5.
The thermodynamic parameters enthalpy and entropy of the interaction between calcium(II) or copper(II) with 5′-UMP, 5′-CMP, 5′-AMP, 5′-GMP or 5′-IMP in aqueous solution were determined calorimetrically (ionic strength adjusted to 0.1 with tetramethylammonium bromide) at 25 °C and pH 7 for Ca(II) or pH 3–5 for Cu(II). The experimental conditions were carefully selected to avoid polynuclear complex formation and nucleotide self-stacking. The calorimetric data confirm the tendency toward macrochelation which was indicated by Sigel after very precise potentiometric studies, and which follows the order Cu(II)>Ca(II) for the metal ions and GMP>IMP>AMP>CMP=UMP for the nucleotides. Macrochelate formation for these metal-nucleoside monophosphate complexes is energetically favorable and entropically unfavorable. Received: 13 August 1999 / Accepted: 1 February 2000  相似文献   

6.
Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using 1H NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(I), <1, magnesium(II), 4.8+/-0.2, and calcium(II), 5.0+/-1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions.  相似文献   

7.
The interaction of copper(II) with adenosine, 2'-deoxyadenosine, 1-methyladenosine, 7-deazaadenosine and AMP was studied by spectroscopic and magnetochemical methods. In non-aqueous medium, copper(II) interacts with adenosine and AMP at N-7 and N-1, and with 1-methyladenosine at N-7 and N-3. The copper ion is not bound to the NH2 group. In aqueous solution, copper(II) interacts both with N-7 and N-1 of adenosine, and in AMP additionally with the phosphate group. The interaction of copper(II) with the heterocyclic part, but not withthe phosphate group, is dependent on the extent of protonation of the molecular. A crystalline AMP-copper(II) complex [Cu(C10H12N5O7P).(H2O)2] was obtained; the phosphate group and probably N-7 are involved in the complex formation.  相似文献   

8.
Interaction of copper(II) with guanosine, 2'-deoxyguanosine, 1-methylguanosine, 7-methylguanosine and GMP was studied withe use of spectroscopic and magneto-chemical methods. The main site of copper(II) binding in guanosine is nitrogen N-7; participation of N-1 is not excluded. The involvement of carbonyl oxygen in copper binding or copper chelation to N-7 and 0-6 is rather unlikely. A crystalline complex of copper(II) with GMP [Cu(C10H12O8N5P) .(H2O)3] was obtained, and it was demonstrated that copper(II) is bound with N-7 and the phosphate group.  相似文献   

9.
1. In aqueous and non-aqueous solutions, copper(II) interacts with the N-3 of cytidine but not with the carbonyl group oxygens of pyrimidine nucleosides. 2. In aqueous solution, copper(II) interacts with the phosphate group and ribose of pyrimidine nucleotides, and additionally with N-3 of 5'-CMP. 3. Broadening of resonance signals of the H-5 proton of 5'-UMP and C-5 of 5'-UMP and 5'-TMP results probably from the interaction between metal ion and the phosphate group situated in direct vicinity of the above atoms. 4. In the copper(II)-pyrimidine nucleotide complexes in solid state, copper is coordinated with the phosphate group, and in 5'-CMP additionally with the pyrimidine moiety of the nucleotide.  相似文献   

10.
The polyadenylic acid [poly(A)] tail of mRNA plays a noteworthy role in the initiation of the translation, maturation, and stability of mRNA. It also significantly contributes to the production of alternate proteins in eukaryotic cells. Hence, it has recently been recognized as a prospective drug target. Binding affinity of bis(N-p-tolylbenzohydroxamato)Cobalt(II), [N-p-TBHA-Co(II)] (1) and bis(N-p-naphthylbenzohydroxamato)Copper(II), [N-p-NBHA-Cu(II)] (2) complexes with poly(A) have been investigated by biophysical techniques namely, absorption spectroscopy, fluorescence spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, circular dichroism spectroscopy, viscometric measurements and through molecular docking studies. The intrinsic binding constants (Kb) of complexes were determined following the order of N-p-TBHA-Co(II)] > N-p-NBHA-Cu(II), along with hyperchromism and a bathochromic shift for both complexes. The fluorescence quenching method revealed an interaction between poly(A)-N-p-TBHA-Co(II)/poly(A)-N-p-NBHA-Cu(II). The mode of binding was also determined via the fluorescence ferrocyanide quenching method. The increase in the viscosity of poly(A) that occurred from increasing the concentration of the N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) complex was scrutinized. The characteristics of the interaction site of poly(A) with N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) were adenine and phosphate groups, as revealed by DRS-FTIR spectroscopy. Based on these observations, a partial intercalative mode of the binding of poly(A) has been proposed for both complexes. Circular dichroism confirmed the interaction of both the complexes with poly(A). The molecular docking results illustrated that complexes strongly interact with poly(A) via the relative binding energies of the docked structure as ?259.39eV and ?226.30eV for N-p-TBHA-Co(II) and N-p-NBHA-Cu(II) respectively. Moreover, the binding affinity of N-p-TBHA-Co(II) is higher in all aspects than N-p-NBHA-Cu(II) for poly(A).  相似文献   

11.
Interaction of heparin cofactor II with neutrophil elastase and cathepsin G   总被引:1,自引:0,他引:1  
We investigated the interaction of the human plasma proteinase inhibitor heparin cofactor II (HC) with human neutrophil elastase and cathepsin G in order to examine 1) proteinase inhibition by HC, 2) inactivation of HC, and 3) the effect of glycosaminoglycans on inhibition and inactivation. We found that HC inhibited cathepsin G, but not elastase, with a rate constant of 6.0 x 10(6) M-1 min-1. Inhibition was stable, with a dissociation rate constant of 1.0 x 10(-3) min-1. Heparin and dermatan sulfate diminished inhibition slightly. Both neutrophil elastase and cathepsin G at catalytic concentrations destroyed the thrombin inhibition activity of HC. Inactivation was accompanied by a dramatic increase in heat stability, as occurs with other serine proteinase inhibitors. Proteolysis of HC (Mr 66,000) produced a species (Mr 58,000) that retained thrombin inhibition activity, and an inactive species of Mr 48,000. Amino acid sequence analysis led to the conclusion that both neutrophil elastase and cathepsin G cleave HC at Ile66, which does not affect HC activity, and at Val439, near the reactive site Leu444, which inactivates HC. Since cathepsin G is inhibited by HC and also inactivates HC, we conclude that cathepsin G participates in both reactions simultaneously so that small amounts of cathepsin G can inactivate a molar excess of HC. High concentrations of heparin and dermatan sulfate accelerated inactivation of HC by neutrophil proteinases, with heparin having a greater effect. Heparin and dermatan sulfate appeared to alter the pattern, and not just the rate, of proteolysis of HC. We conclude that while HC is an effective inhibitor of cathepsin G, it can be proteolyzed by neutrophil proteinases to generate first an active inhibitor and then an inactive molecule. This two-step mechanism might be important in the generation of chemotactic activity from the amino-terminal region of HC.  相似文献   

12.
When the complexes [Cu(L1)(H2O)](ClO4)21, where L1 = 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane, and [Cu(L2)Cl2] 2, where L2 = 4-methyl-1-(quinol-2-ylmethyl)-1,4-diazacycloheptane are interacted with one/two equivalents of bis(p-nitrophenylphosphate, (p-NO2Ph)2PO2, BNP), no hydrolysis of BNP is observed. From the solution the adducts of copper(II) complexes [Cu2(L1)2((p-NO2Ph)2PO2)2]-(ClO4)23 and [Cu(L2)((p-NO2Ph)2PO2)2]·H2O 4 have been isolated and structurally characterised. The X-ray crystal structure of 3 contains two Cu(L1) units bridged by two BNP molecules. The Cu···Cu distance (5.1 Å) reveals no Cu-Cu interaction. On the other hand, the complex 4 is mononuclear with Cu(II) coordinated to the 3N ligand as well as BNP molecules through phosphate oxygen. The trigonality index (τ, 0.37) observed for 4 is high suggesting the presence of significant trigonal distortion in the coordination geometry around copper(II). The complexes are further characterized by spectral and electrochemical studies.  相似文献   

13.
Copper(II) complexes with glycyl-DL-alpha-amino-n-butyric acid (H2gly-DL-but), glycyl-DL-valine (H2gly-DL-val), glycyl-DL-norleucine (H2gly-DL-norleu), glycyl-DL-threonine (H2gly-DL-thr), glycyl-DL-serine (H2gly-DL-ser), glycyl-DL-phenylalanine (H2gly-DL-phe), and glycyl-L-valine (H2gly-L-val), have been prepared and characterized by IR, powder diffuse reflection, CD and ORD spectra, and magnetic susceptibility measurements, and by single-crystal X-ray diffraction. The crystal structures of the copper complex with H2gly-DL-but, the copper complex with H2gly-DL-val, and [Cu(gly-L-val)]n.0.5nH2O have been determined by a single-crystal X-ray diffraction method. As for the structure of the copper complex with H2gly-DL-but, the configuration around the asymmetric carbon atom is similar to that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-DL-but is [Cu(gly-L-but)]n.nH2O. On the contrary, as for the structure of the copper complex with H2gly-DL-val, the configuration around the asymmetric carbon atom is different from that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-dl-val is [Cu(gly-D-val)]n.0.5nH2O. So during the crystallization of the copper(II) complexes with H2gly-DL-but and H2gly-DL-val, spontaneous resolution has been observed; the four complexes have separated as [Cu(gly-D-but)]n.nH2O, [Cu(gly-L-but)]n.nH2O, [Cu(gly-D-val)]n.0.5nH2O, and [Cu(gly-L-val)]n.0.5nH2O, respectively. [Cu(gly-L-but)]n.nH2O is orthorhombic with the space group P2(1)2(1)2(1). [Cu(gly-D-val)]n.0.5nH2O and [Cu(gly-L-val)]n.0.5nH2O are monoclinic with the space group C2. In these complexes, the copper atom is in a square-pyramidal geometry, ligated by a peptide nitrogen atom, an amino nitrogen atom, a carboxyl oxygen atom, and a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. So these complexes consist of a two-dimensional polymer chain bridged by a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. The axial oxygen atom is located above the basal plane and the side chain of an amino acid is located below it. These polymer chains consist of only one or the other type of optical isomers; no racemic dipeptides are found. Therefore, spontaneous resolution has been observed in the crystallization of copper(II) complexes with H2gly-DL-but and H2gly-DL-val. The crystal structure of [Cu(gly-D-val)]n.0.5nH2O agrees almost completely with that of [Cu(gly-L-val)]n.0.5nH2O, except for the configuration around the asymmetric carbon atom.  相似文献   

14.
The interactions between Cu(II) ions and heparin were investigated using several complementary spectroscopic techniques. NMR indicated an initial binding phase involving specific coordination to four points in the structure that recur in slightly different environments throughout the heparin chain; the carboxylic acid group and the ring oxygen of iduronate-2-O-sulfate, the glycosidic oxygen between this residue and the adjacent (towards the reducing end) glucosamine and the 6-O-sulfate group. In contrast, the later binding phase showed little structural specificity. One- and two-dimensional correlated FTIR revealed that complex out of phase (asynchronous) conformational changes also occurred during the titration of Cu(II) ions into heparin, involving the CO and N-H stretches. EPR demonstrated that the environments of the Cu(II) ions in the initial binding phase were tetragonal (with slightly varied geometry), while the later non-specific phases exhibited conventional coordination. Visible spectroscopy confirmed a shift of the absorbance maximum. Titration of Cu(II) ions into a solution of heparin indicated (both by analysis of FTIR and EPR spectra) that the initial binding phase was complete by 15-20 Cu(II) ions per chain; thereafter the ions bound in the non-specific mode. Hetero-correlation spectroscopy (FTIR-CD) improved resolution and assisted assignment of the broad CD features from the FTIR spectra and indicated both in-phase and more complex out of phase (synchronous and asynchronous, respectively) changes in interactions within the heparin molecule during the titration of Cu(II) ions.  相似文献   

15.
We synthesized a new bis-amide ligand derived from the l(+)-tartaric acid. We then determined its protonation constants and the stability constants of the copper(II) and nickel(II) chelates by potentiometry as well as ESI-MS and UV-Vis spectroscopy. We found that both metal ions are able to induce the deprotonation and the coordination of an amide nitrogen donor atom. In the case of copper complexes, the data show the formation of two major species: Cu2(L2H−3)+ and Cu2(LH−4). EPR and XAS experiments led us to precise the relative structure of these compounds. In Cu2(L2H−3)+, each metal center is coordinated by pyridinic and amidic nitrogen atoms of one ligand and by nitrogen and oxygen atoms from pyridine and hydroxyl moieties from the other one. In Cu2(LH−4), the copper centers are coordinated by pyridinic and amidic nitrogen atoms, as well as a deprotonated hydroxyl group of the ligand. In this latter complex, the lower value of the Cu-Cu distance determined from EXAFS experiments and compared to the one of the solid species likely involve the formation of an exogeneous hydroxyl bridge between the two copper centers. With Ni(II) ions, the only one major species is the mononuclear Ni(LH−2) complex, in which Ni(II) is held in an octahedral environment with the metal center chelated by the two pyridinic and the two amidic nitrogen atoms, and two oxygen atoms from water molecules.  相似文献   

16.
Interaction of cis-dichlorodiammineplatinum (II) with DNA   总被引:5,自引:0,他引:5  
  相似文献   

17.
The nature of interaction of palladium (II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA.  相似文献   

18.
19.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

20.
The interaction of a copper complexes containing Schiff bases with calf thymus (CT) DNA was investigated by spectroscopic methods. UV-vis, fluorescence and CD spectroscopies were conducted to assess their binding ability with CT DNA. The binding constants K have been estimated from 0.8 to 9.1×10(4) M(-1). The percentage of hypochromism is found to be over 70% (from spectral titrations). The results showed that the copper(II) complexes could bind to DNA with an intercalative mode. Synergic action of Cu(II) complexes with ascorbic acid against Candida albicans induced the generation of free radicals and increased (more than 60 times) antimicrobial effect of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号