首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion.  相似文献   

2.
Some metazoans have evolved the capacity to survive severe oxygen deprivation. The nematode, Caenorhabditis elegans, exposed to anoxia (0 kPa, 0% O(2)) enters into a recoverable state of suspended animation during all stages of the life cycle. That is, all microscopically observable movement ceases including cell division, developmental progression, feeding, and motility. To understand suspended animation, we compared oxygen-deprived embryos to nontreated embryos in both wild-type and hif-1 mutants. We found that hif-1 mutants survive anoxia, suggesting that the mechanisms for anoxia survival are different from those required for hypoxia. Examination of wild-type embryos exposed to anoxia show that blastomeres arrest in interphase, prophase, metaphase, and telophase but not anaphase. Analysis of the energetic state of anoxic embryos indicated a reversible depression in the ATP to ADP ratio. Given that a decrease in ATP concentrations likely affects a variety of cellular processes, including signal transduction, we compared the phosphorylation state of several proteins in anoxic embryos and normoxic embryos. We found that the phosphorylation state of histone H3 and cell cycle-regulated proteins recognized by the MPM-2 antibody were not detectable in anoxic embryos. Thus, dephosphorylation of specific proteins correlate with the establishment and/or maintenance of a state of anoxia-induced suspended animation.  相似文献   

3.
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30--50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

4.
Eucaryotic cells contain at least two general classes of oxygen-regulated nuclear genes: aerobic genes and hypoxic genes. Hypoxic genes are induced upon exposure to anoxia while aerobic genes are down-regulated. Recently, it has been reported that induction of some hypoxic nuclear genes in mammals and yeast requires mitochondrial respiration and that cytochrome-c oxidase functions as an oxygen sensor during this process. In this study, we have examined the role of the mitochondrion and cytochrome-c oxidase in the expression of yeast aerobic nuclear COX genes. We have found that the down-regulation of these genes in anoxic cells is reflected in reduced levels of their subunit polypeptides and that cytochrome-c oxidase subunits I, II, III, Vb, VI, VII, and VIIa are present in promitochondria from anoxic cells. By using nuclear cox mutants and mitochondrial rho(0) and mit(-) mutants, we have found that neither respiration nor cytochrome-c oxidase is required for the down-regulation of these genes in cells exposed to anoxia but that a mitochondrial genome is required for their full expression under both normoxic and anoxic conditions. This requirement for a mitochondrial genome is unrelated to the presence or absence of a functional holocytochrome-c oxidase. We have also found that the down-regulation of these genes in cells exposed to anoxia and the down-regulation that results from the absence of a mitochondrial genome are independent of one another. These findings indicate that the mitochondrial genome, acting independently of respiration and oxidative phosphorylation, affects the expression of the aerobic nuclear COX genes and suggest the existence of a signaling pathway from the mitochondrial genome to the nucleus.  相似文献   

5.
Pamela S. David 《BBA》2005,1709(2):169-180
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30-50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

6.
Cells and organisms face anoxia in a wide variety of contexts, including ischemia and hibernation. Cells respond to anoxic conditions through multiple signaling pathways. We report that NSY-1, the Caenorhabditis elegans ortholog of mammalian apoptosis signal-regulating kinase (ASK) family of MAP kinase (MAPK) kinase kinases (MAP3Ks), regulates viability of animals in anoxia. Loss-of-function mutations of nsy-1 increased survival under anoxic conditions, and increased survival was also observed in animals with mutations in tir-1 and the MAPK kinase (MAP2K) sek-1, which are upstream and downstream factors of NSY-1, respectively. Consistent with these findings, anoxia was found to activate the p38 MAPK ortholog PMK-1, and this was suppressed in nsy-1 and tir-1 mutant animals. Furthermore, double-mutant analysis showed that the insulin-signaling pathway, which also regulates viability in anoxia, functioned in parallel to NSY-1. These results suggest that the TIR-1-NSY-1-SEK-1-PMK-1 pathway plays important roles in the reponse to anoxia in C. elegans.  相似文献   

7.
8.
LaRue BL  Padilla PA 《PloS one》2011,6(2):e16790

Background

Preconditioning environments or therapeutics, to suppress the cellular damage associated with severe oxygen deprivation, is of interest to our understanding of diseases associated with oxygen deprivation. Wildtype C. elegans exposed to anoxia enter into a state of suspended animation in which energy-requiring processes reversibly arrest. C. elegans at all developmental stages survive 24-hours of anoxia exposure however, the ability of adult hermaphrodites to survive three days of anoxia significantly decreases. Mutations in the insulin-like signaling receptor (daf-2) and LIN-12/Notch (glp-1) lead to an enhanced long-term anoxia survival phenotype.

Methodology/Principal Findings

In this study we show that the combined growth environment of 25°C and a diet of HT115 E. coli will precondition adult hermaphrodites to survive long-term anoxia; many of these survivors have normal movement after anoxia treatment. Animals fed the drug metformin, which induces a dietary-restriction like state in animals and activates AMPK in mammalian cell culture, have a higher survival rate when exposed to long-term anoxia. Mutations in genes encoding components of AMPK (aak-2, aakb-1, aakb-2, aakg-2) suppress the environmentally and genetically induced long-term anoxia survival phenotype. We further determine that there is a correlation between the animals that survive long-term anoxia and increased levels of carminic acid staining, which is a fluorescent dye that incorporates in with carbohydrates such as glycogen.

Conclusions/Significance

We conclude that small changes in growth conditions such as increased temperature and food source can influence the physiology of the animal thus affecting the responses to stress such as anoxia. Furthermore, this supports the idea that metformin should be further investigated as a therapeutic tool for treatment of oxygen-deprived tissues. Finally, the capacity for an animal to survive long bouts of severe oxygen deprivation is likely dependent on specific subunits of the heterotrimeric protein AMPK and energy stores such as carbohydrates.  相似文献   

9.
10.
Firm support for the notion that metabolism and particularly mitochondrial metabolism plays a significant role in aging has been gathered in studies on yeast. As in other organisms, mitochondria contribute to aging through their propensity to generate reactive oxygen species. There is more to the involvement of mitochondria in aging than this, however. Mitochondrial dysfunction, which accumulates during aging, triggers the retrograde response, an intracellular signaling pathway that activates genes that compensate for this dysfunction. A key signaling protein in this pathway is the Rtg2 protein. Recent studies have provided evidence that this protein lies at the nexus of the four major processes that are involved in aging in yeast and in other organisms; namely, metabolism, stress resistance, chromatin-dependent gene regulation, and genome stability. The details of this central role of Rtg2 protein explain the delicate balance between longevity and aging, which ultimately must tip towards the latter. Phenomena that resemble the retrograde response appear to exist in human cells, with both common and cell type-specific gene expression changes as the output.  相似文献   

11.
Some vertebrates depress overall metabolism in an abrupt and reversible fashion when challenged with anoxia, ensuring stabilization of cellular [ATP] and long-term survival, but little is known about the eliciting stimuli (e.g., change in O2, adenylates) and downstream effectors responsible for metabolic arrest. Accordingly, eel (Anguilla anguilla) hepatocytes were treated with inhibitors of putative components of the oxygen/metabolite-sensing pathway(s) and exposed to anoxia (Po2=0 mmHg). Anoxia in untreated cells caused a remarkable 85-fold decrease in ATP production rate, but cellular ATP levels stabilized following an initial steep drop. Reoxygenation of cells after 4 h of anoxia caused a fast metabolization of accumulated lactate and reestablishment of preanoxic ATP levels. Unlike physiological anoxia, pharmacological inhibition of the electron transport chain in the presence of oxygen caused extensive cellular ATP depletion, though no loss in viability. In contrast, cellular lactate (i.e., ATP) production rate was affected similarly by either treatment, suggesting that anaerobic glycolysis is regulated by a stimulus other than oxygen tension per se, whereas the continuous matching of ATP consumption and a rapidly ceasing mitochondrial ATP supply require a physiological relevant change in oxygen tension. Protein kinases, notably kinase C (PKC) and A (PKA), have been proposed as key downstream regulators of stress-induced defense mechanisms, but anoxic cell viability, metabolic rate, and [ATP] were not significantly affected by inhibitors of PKC and PKA. Likewise, inhibition of the upstream PKC-activating enzymes phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI 3-K) had no effect on recorded parameters. Anoxic cell survival in complex organisms may, in vivo, also depend on stress hormones released from distant oxygen-sensing cells. Accordingly, adrenaline elevated anaerobic energy production but, apparently, also elevated ATP consumption because cellular ATP levels during oxygen deprivation were slightly lowered by adrenergic stimulation.  相似文献   

12.
Mitochondrial signaling, TOR, and life span   总被引:1,自引:0,他引:1  
Schieke SM  Finkel T 《Biological chemistry》2006,387(10-11):1357-1361
Growing evidence supports the concept that mitochondrial metabolism and reactive oxygen species (ROS) play a major role in aging and determination of an organism's life span. Cellular signaling pathways regulating mitochondrial activity, and hence the generation of ROS and retrograde signaling events originating in mitochondria, have recently moved into the spotlight in aging research. Involvement of the energy-sensing TOR pathway in both mitochondrial signaling and determination of life span has been shown in several studies. This brief review summarizes the recent progress on how mitochondrial signaling might contribute to the aging process with a particular emphasis on TOR signaling from invertebrates to humans.  相似文献   

13.
Certain freshwater turtles and fish are extremely anoxia-tolerant, capable of surviving hours of anoxia at high temperatures and weeks to months at low temperatures. There is great interest in understanding the cellular mechanisms underlying anoxia-tolerance in these groups because they are anoxia-tolerant vertebrates and because of the far-reaching medical benefits that would be gained. It has become clear that a pre-condition of prolonged anoxic survival must involve the matching of ATP production with ATP utilization to maintain stable ATP levels during anoxia. In most vertebrates, anoxia leads to a severe decrease in ATP production without a concomitant reduction in utilization, which inevitably leads to the catastrophic events associated with cell death or necrosis. Anoxia-tolerant organisms do not increase ATP production when faced with anoxia, but rather decrease utilization to a level that can be met by anaerobic glycolysis alone. Protein synthesis and ion movement across the plasma membrane are the two main targets of regulatory processes that reduce ATP utilization and promote anoxic survival. However, the oxygen sensing and biochemical signaling mechanisms that achieve a coordinated reduction in ATP production and utilization remain unclear. One candidate-signaling compound whose extracellular concentration increases in concert with decreasing oxygen availability is adenosine. Adenosine is known to have profound effects on various aspects of tissue metabolism, including protein synthesis, ion pumping and permeability of ion channels. In this review, I will investigate the role of adenosine in the naturally anoxia-tolerant freshwater turtle and goldfish and give an overview of pathways by which adenosine concentrations are regulated.  相似文献   

14.
Nitrite (NO(2)(-)) functions as an important nitric oxide (NO) donor under hypoxic conditions. Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia (anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survives extended periods without oxygen in an active state, which has made it a model for studying how evolution has solved the problems of anoxic survival. We investigated the role of nitrite and NO in the anoxia tolerance of this fish by measuring NO metabolites in normoxic, anoxic, and reoxygenated crucian carp. We also cloned and sequenced crucian carp NO synthase variants and quantified their mRNA levels in several tissues in normoxia and anoxia. Despite falling levels of blood plasma nitrite, the crucian carp showed massive increases in nitrite, S-nitrosothiols (SNO), and iron-nitrosyl (FeNO) compounds in anoxic heart tissue. NO(2)(-) levels were maintained in anoxic brain, liver, and gill tissues, whereas SNO and FeNO increased in a tissue-specific manner. Reoxygenation reestablished normoxic values. We conclude that NO(2)(-) is shifted into the tissues where it acts as NO donor during anoxia, inducing cytoprotection under anoxia/reoxygenation. This can be especially important in the crucian carp heart, which maintains output in anoxia. NO(2)(-) is currently tested as a therapeutic drug against reperfusion damage of ischemic hearts, and the present study provides evolutionary precedent for such an approach.  相似文献   

15.
Abstract: Fluorescence of NADH and vascular volume of the brain cortex of chloralose-anesthetized cats were measured by surface fluororeflectometry. A cranial window and superfusion technique was elaborated for the topical inhibition of mitochondrial electron transport in the brain cortex by amytal (inhibits at site I) and cyanide (inhibits at site III). The changes in NAD/NADH redox state and CVV evoked by these electron transport inhibitors were compared with those elicited by anoxic anoxia. Amytal (10-3-10-1 M ) and cyanide (10-5-10-2 M ) resulted in a concentration-dependent and reversible increase in cortical NAD reduction and vascular volume, but the cerebrocortical vessels were almost completely dilatated long before maximum NAD reduction was reached. Cyanide at 10-2 M increased cortical NAD reduction and vascular volume as much as anoxic anoxia. Amytal at 10-1 M induced approximately half of the NAD reduction evoked by 10-2 M cyanide or anoxic anoxia, but resulted in only slightly less vasodilatation than that following cyanide and anoxic anoxia. Since amytal inhibits mitochondrial electron transport at site I—and cyanide and anoxia at site III—but induces a comparable degree of vasodilatation, it is concluded that cytochrome oxidase cannot be the single molecular oxygen sensor in the brain cortex.  相似文献   

16.
17.
The deleterious effects of anoxia followed by reperfusion with oxygen in higher animals including mammals are well known. A convenient and genetically well characterized small-animal model that exhibits reproducible, quantifiable oxygen reperfusion damage is currently lacking. Here we describe the dynamics of whole-organism metabolic recovery from anoxia in an insect, Drosophila melanogaster, and report that damage caused by oxygen reperfusion can be quantified in a novel but straightforward way. We monitored CO(2) emission (an index of mitochondrial activity) and water vapor output (an index of neuromuscular control of the spiracles, which are valves between the outside air and the insect's tracheal system) during entry into, and recovery from, rapid-onset anoxia exposure with durations ranging from 7.5 to 120 minutes. Anoxia caused a brief peak of CO(2) output followed by knock-out. Mitochondrial respiration ceased and the spiracle constrictor muscles relaxed, but then re-contracted, presumably powered by anaerobic processes. Reperfusion to sustained normoxia caused a bimodal re-activation of mitochondrial respiration, and in the case of the spiracle constrictor muscles, slow inactivation followed by re-activation. After long anoxia durations, both the bimodality of mitochondrial reactivation and the recovery of spiracular control were impaired. Repeated reperfusion followed by episodes of anoxia depressed mitochondrial respiratory flux rates and damaged the integrity of the spiracular control system in a dose-dependent fashion. This is the first time that physiological evidence of oxygen reperfusion damage has been described in an insect or any invertebrate. We suggest that some of the traditional approaches of insect respiratory biology, such as quantifying respiratory water loss, may facilitate using D. melanogaster as a convenient, well-characterized experimental model for studying the underlying biology and mechanisms of ischemia and reperfusion damage and its possible mitigation.  相似文献   

18.
The molecular mechanisms by which cells detect hypoxia (1.5% O2), resulting in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) protein remain unclear. One model proposes that mitochondrial generation of reactive oxygen species is required to stabilize HIF-1alpha protein. Primary evidence for this model comes from the observation that cells treated with complex I inhibitors, such as rotenone, or cells that lack mitochondrial DNA (rho(0)-cells) fail to generate reactive oxygen species or stabilize HIF-1alpha protein in response to hypoxia. In the present study, we investigated the role of mitochondria in regulating HIF-1alpha protein stabilization under anoxia (0% O2). Wild-type A549 and HT1080 cells stabilized HIF-1alpha protein in response to hypoxia and anoxia. The rho(0)-A549 cells and rho(0)-HT1080 cells failed to accumulate HIF-1alpha protein in response to hypoxia. However, both rho(0)-A549 and rho(0)-HT1080 were able to stabilize HIF-1alpha protein levels in response to anoxia. Rotenone inhibited hypoxic, but not anoxic, stabilization of HIF-1alpha protein. These results indicate that a functional electron transport chain is required for hypoxic but not anoxic stabilization of HIF-1alpha protein.  相似文献   

19.
The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice.  相似文献   

20.
Hypoxic pretreatment of tomato (Lycopersicon esculentum M.) roots induced an acclimation to anoxia. Survival in the absence of oxygen was improved from 10 h to more than 36 h if external sucrose was present. The energy charge value of anoxic tissues increased during the course of hypoxic acclimation, indicating an improvement of energy metabolism. In acclimated roots ethanol was produced immediately after transfer to anoxia and little lactic acid accumulated in the tissues. In nonacclimated roots significant ethanol synthesis occurred after a 1-h lag period, during which time large amounts of lactic acid accumulated in the tissues. Several enzyme activities, including that of alcohol dehydrogenase, lactate dehydrogenase, pyruvate decarboxylase, and sucrose synthase, increased during the hypoxic pretreatment. In contrast to maize, hexokinase activities did not increase and phosphorylation of hexoses was strongly inhibited during anoxia in both kinds of tomato roots. Sucrose, but not glucose or fructose, was able to sustain glycolytic flux via the sucrose synthase pathway and allowed anoxic tolerance of acclimated roots. These results are discussed in relation to cytosolic acidosis and the ability of tomato roots to survive anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号