首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内蒙古退化荒漠草原土壤细菌群落结构特征   总被引:5,自引:1,他引:4  
吴永胜  马万里  李浩  卢萍  吕桂芬 《生态学报》2010,30(23):6355-6362
用PCR-DGGE技术对不同退化程度荒漠草地土壤细菌群落结构的分析表明:不同退化草地土壤细菌群落结构发生了明显的变化。2006年夏季,不同退化草地土壤细菌的Shannon-Weaver指数随退化程度的加剧呈降低趋势,由高到低依次是:轻度退化、中度退化和重度退化草地。2007年夏季多样性指数随退化程度的加剧呈先降低后增加的趋势,由高到低依次为:轻度退化、重度退化和中度退化。对17个克隆进行了序列测定所得到的16SrDNA在数据库中的登录号为:EU327142-EU327157和EU327164。将其与Genbank数据库中的序列进行比对,结果表明这些序列与已知序列的相似性均在95%-99%之间。系统发育分析结果表明,内蒙古荒漠草地土壤主要细菌隶属于以下几个分支:拟杆菌纲(Bacteroidetes),酸杆菌纲(Acidobacteria),变形菌纲(Proteobacteria)的γ、δ类群和厚壁菌纲(Firmicutes)。其中,拟杆菌纲所占的比例为47%左右,为优势种。  相似文献   

2.
镍污染对土壤微生物的生态效应   总被引:12,自引:0,他引:12  
镍是高等植物和某些微生物必需的微量营养元素之一,在它们的生命活动中起着重要作用;但浓度较高时,也是一种极毒元素。大量的研究表明,镍污染土壤中微生物的生长、代谢、群落结构和种群多样性会受到不同程度的影响;微生物在长期受重金属威迫的环境中形成其适应性。利用微生物形成的这种适应机制,采用微生物技术治理重金属污染的土壤是可能的。本文还对镍污染土壤的微生物评价指标体系、土壤环境容量、微生物技术开发和综合治理技术开发等的进一步研究作了展望。  相似文献   

3.
A sensitive spectrophotometric assay for determining mitochondrial malate dehydrogenase activity is described. The assay measures NADH production by coupling it to the reduction of 2-(p-iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT). Via an intermediate electron carrier, either phenazine methosulfate or lipoamide dehydrogenase, INT accepts electrons and is reduced to a red-colored formazan, which can be quantified by spectrophotometer at 500 nm. This assay uses only commercial reagents but gives a 2-5 fold (with lipoamide dehydrogenase) or 5-20 fold (with phenazine methosulfate) activity increase over currently available assays for pure enzyme in mitochondria isolated from human neuroblastoma cells, rat brain and liver, and crude homogenates of rat brain and liver. The assay can be easily performed with 96-well plate and less than 2.5 microg protein of isolated mitochondria or crude tissue homogenate. These results suggest that this assay is a simple, sensitive, stable and inexpensive method with wide application.  相似文献   

4.
草原土壤微生物受放牧的影响及其季节变化   总被引:3,自引:1,他引:2  
以内蒙古克什克腾旗西部的典型草原为对象,研究轻度放牧区(LG)、中度放牧区(MG)、重度放牧区(HG)土壤中的微生物数量、微生物生物量和土壤呼吸强度的季节变化以及放牧强度对它们的影响。结果表明,微生物数量、微生物生物量以及土壤的呼吸作用强度均有较明显的季节性变化,峰值均出现在8月份,而且三者之间具有极显著的正相关关系;轻度和中度放牧有利于土壤中的微生物数量、生物量的增加,而重度放牧则导致土壤中微生物数量和生物量的减少。  相似文献   

5.
二噁(口英)的生物降解及其机理   总被引:2,自引:0,他引:2  
利用微生物降解二口恶口英是一种具有广阔前景的治理二口恶口英污染的方法。近年来利用微生物降解二口恶口英已经引起众多研究者的重视,国外在这方面的研究已取得了一定成果。介绍了能降解二口恶口英的微生物种类及其所能降解的二口恶口英类型,对近年来提出的微生物降解(包括氧化降解和还原降解)的可能途径,中间产物及其降解效果进行了综述。并对土壤在被污染后如何进行生物修复等方面进行了探讨。  相似文献   

6.
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.  相似文献   

7.
短期放牧对草甸草原土壤微生物与土壤酶活性的影响   总被引:3,自引:0,他引:3  
【目的】为呼伦贝尔草甸草原生态系统的保护、恢复及重建提供微生物学基础数据。了解草原土壤微生物和酶活性对放牧强度的响应。【方法】分别采集六个不同放牧强度的土壤样品,测定土壤微生物数量、土壤微生物量和土壤酶活性,分析短时期不同放牧强度土壤微生物数量、土壤微生物量和土壤酶活性的变化特征及其相互关系。【结果】不同放牧强度下,菌群数量分布为细菌>放线菌>真菌;土壤微生物数量、微生物量均表现为放牧区高于对照区;在土壤表层(0 10 cm),土壤过氧化氢酶、转化酶和蛋白酶活性表现出随放牧强度的增加先上升后略降的趋势,且放牧区均高于对照区,与土壤表层比较,在较深层(10 cm 20 cm),土壤细菌、真菌的数量和微生物量碳、氮下降幅度随放牧强度的增大而增大。土壤微生物数量、微生物量及土壤酶活性的垂直分布为0 10 cm>10 cm 20 cm。相关分析结果表明:放牧干扰条件下,土壤微生物数量与微生物量之间均存在显著或极显著的相关性。土壤酶活性与微生物数量、微生物量密切相关,过氧化氢酶、转化酶与细菌、放线菌极显著相关(P<0.01)、与微生物量碳显著相关(P<0.05);蛋白酶与真菌及微生物量碳、氮极显著相关(P<0.01),与细菌显著相关(P<0.05)。【结论】适度放牧可使土壤微生物数量、微生物量和土壤酶活性增加。土壤微生物数量、微生物量与土壤酶活性之间具有密切关系。  相似文献   

8.
Two Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G. candidum accumulated KMBA when cultivated on this amino acid, contrary to B. linens suggesting that the transamination pathway is not active in this microorganism. Conversely, a L-methionine gamma-lyase activity--which catalyses the one step L-methionine to methanethiol (MTL) degradation route--was only found in B. linens strains. Several other enzymatic activities involved in the catabolism of the precursors tested were investigated. KMBA transiently accumulated in G. candidum cultures, and was then reduced to HMBA by a KMBA dehydrogenase (KDH) activity. This activity was not detected in B. linens. Despite no HMBA dehydrogenase (HDH) was found in G. candidum, a strong HMBA oxidase (HOX) activity was measured in this microorganism. This latter activity was weakly active in B. linens. KMBA and HMBA demethiolating activities were found in all the microorganisms. Our results illustrate the metabolic diversity between cheese-ripening microorganisms of the cheese ecosystem.  相似文献   

9.
The results of the study confirm the significance of clay minerals as a factor influencing the biochemical activity of soil microorganisms. The soil microflora is influenced both by the direct effect of clays on the microbial cells and indirectly, by their effect on the environment. The direct effect is projected into fundamental processes of the cycle of biogenic elements, including humification processes. The character and mechanism of the effect depend on the species of microorganism, on the quality and quantity of the mineral sorbents present in the soil and on other ecological factors. A further study will be carried out to investigate different aspects of the influence of clay minerals on the incidence, growth and biochemical activity of soil microorganisms.  相似文献   

10.
11.
Soil microorganism and enzymes are important parts of forest ecosystem and sensitive to environmental changes. They have many critical functions in energy conversion and material cycle of forest soil. However, there are few studies about soil biological properties under subalpine coniferous forest, in particular, a serial of spruce plantation chronosequences following clear-cutting of natural coniferous forest in western Sichuan. We measured the quantity of soil microorganism (including bacteria, fungi and actinomyces), enzyme activity and soil nutrients under spruce plantation chronosequences in western Sichuan to investigate soil biological properties and their relationship with soil nutrients. The results showed that soil microorganism, enzyme activity and soil nutrients of the mature spruce plantation were significantly lower than those of the young spruce plantation and secondary broad-leaved forest. Soil fertility degraded greatly with the increasing of spruce plantation age and was mainly affected by forest micro-environment. There were significant correlation between the amounts of soil microorganisms, soil enzyme activities and nutrients (e.g. soil organic matter, total N, total P, alkali-hydrolyzable N and available K). Therefore soil biological indices can be used to evaluate soil fertility. In order to accelerate the course of restoration and rehabilitation of degraded pure plantation, the strategy and measures were put forward, including application of thinning rationally for existing dense plantations and establishment of mixture forest of coniferous and broad-leaved trees for new afforestations, which would create good forest micro-environment for plant growth.  相似文献   

12.
Pang X Y  Wu N  Liu Q  Bao W K 《农业工程》2009,29(5):286-292
Soil microorganism and enzymes are important parts of forest ecosystem and sensitive to environmental changes. They have many critical functions in energy conversion and material cycle of forest soil. However, there are few studies about soil biological properties under subalpine coniferous forest, in particular, a serial of spruce plantation chronosequences following clear-cutting of natural coniferous forest in western Sichuan. We measured the quantity of soil microorganism (including bacteria, fungi and actinomyces), enzyme activity and soil nutrients under spruce plantation chronosequences in western Sichuan to investigate soil biological properties and their relationship with soil nutrients. The results showed that soil microorganism, enzyme activity and soil nutrients of the mature spruce plantation were significantly lower than those of the young spruce plantation and secondary broad-leaved forest. Soil fertility degraded greatly with the increasing of spruce plantation age and was mainly affected by forest micro-environment. There were significant correlation between the amounts of soil microorganisms, soil enzyme activities and nutrients (e.g. soil organic matter, total N, total P, alkali-hydrolyzable N and available K). Therefore soil biological indices can be used to evaluate soil fertility. In order to accelerate the course of restoration and rehabilitation of degraded pure plantation, the strategy and measures were put forward, including application of thinning rationally for existing dense plantations and establishment of mixture forest of coniferous and broad-leaved trees for new afforestations, which would create good forest micro-environment for plant growth.  相似文献   

13.
土壤微生物作为生态系统中重要的分解者,在对动植物残体以及土壤有机质降解的过程中,一方面释放CO2到大气中,是土壤碳排放的重要组成部分;另一方面,在分解的过程中,形成了可供给植物利用的无机养分.由于温度对代谢活动的直接影响,过去对微生物代谢的研究主要集中在生长季,通常假设冬季土壤微生物的活力可以忽略.陆地表面近60%的区域经历着季节性积雪覆盖和季节性土壤冻结的影响.近年来的研究表明,由于积雪的覆盖,形成很好的绝缘层,雪被下土壤中微生物仍然具有显著的活性,对土壤碳排放和植物的养分吸收具有重要的贡献.本文就积雪和冻结土壤系统中的微生物碳排放和碳氮循环的季节性特征进行了全面的分析,综述了国内外冬季雪下碳氮循环的研究现状,提出了目前研究中存在的问题和未来的研究方向,强调了开展温带冬季雪下土壤微生物碳氮循环研究的必要性和重要性.  相似文献   

14.
刘秉儒  牛宋芳  张文文 《生态学报》2019,39(24):9171-9178
柠条(Caragana korshinskii)是荒漠草原区主要的造林绿化树种,研究其根际土壤微生物和酶活性与不同土壤类型土壤粒径组成的关系有重要意义,然而土壤粒径对荒漠草原柠条根际土壤微生物数量和酶活性的影响知之甚少,探讨土壤颗粒组分与微生物数量、土壤酶活性之间的关系,以及土壤颗粒组成对荒漠草原区固沙灌木植物柠条根际土壤微生物数量及酶活性的影响,可为揭示荒漠草原土壤退化及生态修复提供参考。以宁夏荒漠草原区土壤粒径组成差异显著的灰钙土、红黏土、风沙土环境下栽植的柠条为研究对象,研究不同土壤颗粒组成对根际土壤微生物数量及酶活性的相互关系与影响。结果表明:土壤微生物的数量表现为细菌放线菌真菌。根际土壤中的细菌、真菌数量显著高于非根际,且在3种不同类型的土壤中随着细砂粒的增多,真菌和放线菌数量逐渐降低,而细菌数量呈先增大后减小的趋势;根际与非根际土壤的蔗糖酶、碱性磷酸酶及过氧化氢酶活性均呈现出灰钙土红黏土风沙土的趋势,红黏土根际土壤中的脲酶活性显著高于灰钙土与风沙土;除过氧化氢酶外,土壤酶活性表现为根际高于非根际,在3种不同类型的土壤中随着细砂含量的增加,土壤酶活性均呈递减趋势。土壤颗粒组成与微生物数量之间没有明显的相关性,而与土壤酶活性之间显著相关,土壤酶活性与黏粒、粉粒呈正相关,与细砂、中砂呈负相关关系,根际土壤中酶活性更高,能够为植物及微生物提供更多的营养。  相似文献   

15.
A time-course pot experiment was conducted with ryegrass grown in soil experimentally contaminated with diesel oil. Relationships among plant growth variables, microbial activity and the dissipation rate of diesel oil over time were analyzed.Results indicate that ryegrass growth can lower the dissipation threshold. The residual rate of diesel oil in the rhizosphere was 55% lower than in the corresponding root-free soil, and the threshold reduction occurred after the development of plant roots. In the rhizosphere, the number of aerobic bacteria and the amount of soil dehydrogenase activity were higher than in the root-free soil and also showed a correlation with the growth of roots.The dissipation rate of diesel oil showed a correlation with soil dehydrogenase activity in both the rhizosphere and the root-free soil. A positive correlation was observed between the growth rate of roots and soil dehydrogenase activity in the rhizosphere. Moreover, the dissipation rate per dehydrogenase activity of the rhizosphere was higher than in the root-free soil. Ryegrass roots were determined, therefore, to be effective at enhancing the biodegradation of diesel-contaminated soil.  相似文献   

16.
Soil microcosm experiments were used to investigate the effects on growth and activity of soil microorganisms of an herbicide combination (60% bromoxynil + 3% prosulfuron) frequently used to provide a broad spectrum control of weed species. Culturable aerobic bacteria, fungi, and actinomycetes, the fundamental groups of heterotrophic microorganisms, and nitrifiers, considered a very sensitive group to these compounds, were evaluated. Since herbicides have been found to inhibit decomposition of cellulose in soil, the effects on cellulolytic bacteria and fungi were determined. Dehydrogenase activity as a measure of microbial activity was another parameter considered. The results emphasized a tendency of reversible stimulatory/inhibitory effects of the tested compounds on soil microorganisms, with fungi as an exception. A long-lasting negative action on the activity of the dehydrogenase (DHA), commonly used as an index of the overall microbial activity in soil, was found. The magnitude of these effects were dependent on the assayed concentrations of the herbicides mixture. We concluded that the presence of bromoxynil + prosulfuron could induce significant changes in the microbial populations of the soil, concerning the activity and balance of microbial community. Possible environmental risks must be considered. Dehydrogenase activity was shown to be an important indicator of side-effects attributed to these herbicides.  相似文献   

17.
Partial root-zone irrigation creates a dynamic heterogeneous distribution of soil moisture that may affect the numbers and activities of soil microorganisms. In this study, three irrigation methods, i.e. conventional irrigation (CI), alternate partial root-zone irrigation (APRI, alternate watering on both sides of the pot) and fixed partial root-zone irrigation (FPRI, fixed watering on one side of the pot), and three watering levels, i.e. well-watered, mild and severe water deficit, were applied on pot-grown maize. Numbers of soil microorganisms, plant height, stalk diameter, leaf area and biomass accumulation were monitored over the treatment period. A quadratic parabola relationship between the number of soil microorganisms and soil water content was found, indicating the number of soil microorganisms reached a peak at the mild soil water deficit condition, possibly due to better soil aeration. The peak number of soil microorganism was obtained when soil water content was 66, 79 and 75% of field capacity for CI, FPRI and APRI, respectively. Soil microorganisms were evenly distributed in both sides of APRI and their total numbers were always higher than those under other two irrigation methods for the same soil water content. The count of soil microorganisms in the dry root zone of FPRI was reduced by a lack of water. Maximum biomass accumulation was obtained under well watered condition but severe water deficit led to a 50% reduction in the CI treatment. Such reduction was much smaller under APRI and therefore the highest water use efficiency was obtained. Our results suggest that APRI maintained the best aeration and moisture condition in the soil and enhanced the activities of soil microorganisms, which might also have benefited the plant growth.  相似文献   

18.
Biodegradation of dimethylsilanediol in soils.   总被引:3,自引:1,他引:2       下载免费PDF全文
The biodegradation potential of [14C]dimethylsilanediol, the monomer unit of polydimethylsiloxane, in soils was investigated. Dimethylsilanediol was found to be biodegraded in all of the tested soils, as monitored by the production of 14CO2. When 2-propanol was added to the soil as a carbon source in addition to [14C]dimethylsilanediol, the production of 14CO2 increased. A method for the selection of primary substrates that support cometabolic degradation of a target compound was developed. By this method, the activity observed in the soils was successfully transferred to liquid culture. A fungus, Fusarium oxysporum Schlechtendahl, and a bacterium, an Arthrobacter species, were isolated from two different soils, and both microorganisms were able to cometabolize [14C]dimethylsilanediol to 14CO2 in liquid culture. In addition, the Arthrobacter sp. that was isolated grew on dimethylsulfone, and we believe that this is the first reported instance of a microorganism using dimethylsulfone as its primary carbon source. Previous evidence has shown that polydimethylsiloxane is hydrolyzed in soil to the monomer, dimethylsilanediol. Now, biodegradation of dimethylsilanediol in soil has been demonstrated.  相似文献   

19.
The keto form of oxaloacetate (OAA), a product of phosphoenolpyruvate carboxylase (PEPC) activity, can undergo various nonenzymatic conversions which make conventional methods of assaying the enzyme difficult, because the products may either act as inhibitors or go undetected. In studies with PEPC isolated from leaves of maize, an assay coupled with reduction of OAA to malate was compared with product analysis using high-performance liquid chromatography and an assay based on Pi release. The results show that activity of the enzyme in the assay coupled to malate dehydrogenase is underestimated, to varying extents, depending on magnesium concentration, buffer, and pH. In the assay coupled to malate dehydrogenase, inaccuracies occur due to conversion of the keto form of OAA to the enol form, which is not utilized as a substrate, and due to loss of OAA by decarboxylation to pyruvate. The assay based on Pi formation is considered to give the true rate of catalysis. With this assay the pH optimum is 7.8, compared to 8.3-8.5 for the assay coupled to malate dehydrogenase. The metal enol complex of oxaloacetate (M-OAAenol) is an inhibitor of PEPC and conditions which are favorable for forming this tautomer, high pH with divalent metal ions or high concentrations of Tris buffer at a pH below its pKa value, limit catalysis. Glycine stimulates enzyme activity, and it may have its effect by preventing the formation of the hydrated M-OAAenol complex and maintaining more of the OAA in the keto form. This interpretation is consistent with glycine stimulation of malate synthesis in the assay of PEPC coupled to malate dehydrogenase, with glycine stimulation of the decarboxylation of OAA, and with a reduction in the level of the M-OAAenol complex in the presence of glycine.  相似文献   

20.
阔叶红松林合理经营与土壤微生物活性   总被引:2,自引:0,他引:2  
森林是可再生的自然资源,研究证明,阔叶红松林具有很高的生产力,因为它具有最优化的林分结构,这个结构特点,使它的复层异龄和针阔混交的群落结构影响下的土壤肥力较高,土壤微生物类群复杂,活动活跃,森林有机残体的分解与转化较快。系统内的氮、碳及无机养分的循环,能满足林木生长对养分不断增长的需要。系统内各个生态因子处于动态平衡状态。因此,为了不断提  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号