首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Oligomerization of the murine fatty acid transport protein 1   总被引:3,自引:0,他引:3  
The 63-kDa murine fatty acid transport protein 1 (FATP1) was cloned on the basis of its ability to augment fatty acid import when overexpressed in mammalian cells. The membrane topology of this integral plasma membrane protein does not resemble that of polytopic membrane transporters for other substrates. Western blot analysis of 3T3-L1 adipocytes that natively express FATP1 demonstrate a prominent 130-kDa species as well as the expected 63-kDa FATP1, suggesting that this protein may participate in a cell surface transport protein complex. To test whether FATP1 is capable of oligomerization, we expressed functional FATP1 molecules with different amino- or carboxyl-terminal epitope tags in fibroblasts. These epitope-tagged proteins also form apparent higher molecular weight species. We show that, when expressed in the same cells, differentially tagged FATP1 proteins co-immunoprecipitate. The region between amino acid residues 191 and 475 is sufficient for association of differentially tagged truncated FATP1 constructs. When wild type FATP1 and the non-functional s250a FATP1 mutant are co-expressed in COS7 cells, mutant FATP1 has dominant inhibitory function in fatty acid uptake assays. Taken together, these results are consistent with a model in which FATP1 homodimeric complexes play an important role in cellular fatty acid import.  相似文献   

2.
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.  相似文献   

3.
The murine fatty acid transport protein (FATP1) was identified in an expression cloning screen for proteins that facilitate transport of fatty acids across the plasma membranes of mammalian cells. Hydropathy analysis of this protein suggests a model in which FATP1 has multiple membrane-spanning domains. To test this model, we inserted a hemagglutinin epitope tag at the amino terminus or a FLAG tag at the carboxyl terminus of the FATP1 cDNA and expressed these constructs in NIH 3T3 cells. Both tagged constructs produce proteins of the expected molecular masses and are functional in fatty acid import assays. Indirect immunofluorescence studies with selective permeabilization conditions and protease protection studies of sealed membrane vesicles from cells expressing epitope-tagged FATP1 were performed. These experiments show that the extreme amino terminus of tagged FATP1 is oriented toward the extracellular space, whereas the carboxyl terminus faces the cytosol. Additionally, enhanced green fluorescent protein fusion constructs containing predicted membrane-associated or soluble portions of FATP1 were expressed in Cos7 cells and analyzed by immunofluorescence and subcellular fractionation. These experiments demonstrate that amino acids 1-51, 52-100, and 101-190 contain signals for integral association with the membrane, whereas residues 258-313 and 314-475 are only peripherally membrane-associated. Amino acid residues 191-257 and 476-646 do not direct membrane association and likely face the cytosol. Taken together, these data support a model of FATP1 as a polytopic membrane protein with at least one transmembrane and multiple membrane-associated domains. This study provides the first experimental evidence for topology of a member of the family of plasma membrane fatty acid transport proteins.  相似文献   

4.
The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an approximately 25% reduction in basal (3)H-labeled fatty acid uptake and a complete loss of insulin-stimulated (3)H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.  相似文献   

5.
Characterization of a heart-specific fatty acid transport protein   总被引:9,自引:0,他引:9  
Fatty acids are a major source of energy for cardiac myocytes. Changes in fatty acid metabolism have been implicated as causal in diabetes and cardiac disease. The mechanism by which long chain fatty acids (LCFAs) enter cardiac myocytes is not well understood but appears to occur predominantly by protein-mediated transport. Here we report the cloning, expression pattern, and subcellular localization of a novel member of the fatty acid transport protein (FATP) family termed FATP6. FATP6 is principally expressed in the heart where it is the predominant FATP family member. Similar to other FATPs, transient and stable transfection of FATP6 into 293 cells enhanced uptake of LCFAs. FATP6 mRNA was localized to cardiac myocytes by in situ hybridization. Immunofluorescence microscopy of FATP6 in monkey and murine hearts revealed that the protein is exclusively located on the sarcolemma. FATP6 was restricted in its distribution to areas of the plasma membrane juxtaposed with small blood vessels. In these membrane domains FATP6 also colocalizes with another molecule involved in LCFA uptake, CD36. These findings suggest that FATP6 is involved in heart LCFA uptake, in which it may play a role in the pathogenesis of lipid-related cardiac disorders.  相似文献   

6.
Identification of the major intestinal fatty acid transport protein.   总被引:7,自引:0,他引:7  
While intestinal transport systems for metabolites such as carbohydrates have been well characterized, the molecular mechanisms of fatty acid (FA) transport across the apical plasmalemma of enterocytes have remained largely unclear. Here, we show that FATP4, a member of a large family of FA transport proteins (FATPs), is expressed at high levels on the apical side of mature enterocytes in the small intestine. Further, overexpression of FATP4 in 293 cells facilitates uptake of long chain FAs with the same specificity as enterocytes, while reduction of FATP4 expression in primary enterocytes by antisense oligonucleotides inhibits FA uptake by 50%. This suggests that FATP4 is the principal fatty acid transporter in enterocytes and may constitute a novel target for antiobesity therapy.  相似文献   

7.
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.  相似文献   

8.
Fatty acid transport protein 1 (FATP1) is an approximately 63-kDa plasma membrane protein that facilitates the influx of fatty acids into adipocytes as well as skeletal and cardiac myocytes. Previous studies with FATP1 expressed in COS1 cell extracts suggested that FATP1 exhibits very long chain acyl-CoA synthetase (ACS) activity and that such activity may be linked to fatty acid transport. To address the enzymatic activity of the isolated protein, murine FATP1 and ACS1 were engineered to contain a C-terminal Myc-His tag expressed in COS1 cells via adenoviral-mediated infection and purified to homogeneity using nickel affinity chromatography. Kinetic analysis of the purified enzymes was carried out for long chain palmitic acid (C16:0) and very long chain lignoceric acid (C24:0) as well as for ATP and CoA. FATP1 exhibited similar substrate specificity for fatty acids 16-24 carbons in length, whereas ACS1 was 10-fold more active on long chain fatty acids relative to very long chain fatty acids. The very long chain acyl-CoA synthetase activity of the two enzymes was comparable as were the Km values for both ATP and coenzyme A. Interestingly, FATP1 was insensitive to inhibition by triacsin C, whereas ACS1 was inhibited by micromolar concentrations of the compound. These data represent the first characterization of purified FATP1 and indicate that the enzyme is a broad substrate specificity acyl-CoA synthetase. These findings are consistent with the hypothesis that that fatty acid uptake into cells is linked to their esterification with coenzyme A.  相似文献   

9.
Cloned pig fetuses produced by somatic cell nuclear transfer show a high incidence of erroneous development in the uteri of surrogate mothers. The mechanisms underlying the abnormal intrauterine development of cloned pig fetuses are poorly understood. This study aimed to explore the potential causes of the aberrant development of cloned pig fetuses. The levels of numerous fatty acids in allantoic ?uid and muscle tissue were lower in cloned pig fetuses than in artificial insemination‐generated pig fetuses, thereby suggesting that cloned pig fetuses underwent fatty acid deficiency. Cloned pig fetuses also displayed trophoblast hypoplasia and a reduced expression of placental fatty acid transport protein 4 (FATP4), which is the predominant FATP family member expressed in porcine placentas. This result suggested that the placental fatty acid transport functions were impaired in cloned pig fetuses, possibly causing fatty acid deficiency in cloned pig fetuses. The present study provides useful information in elucidating the mechanisms underlying the abnormal development of cloned pig fetuses.  相似文献   

10.
Fatty acid transport protein-4 (FATP4) is the major FATP in the small intestine. We previously demonstrated, using in vitro antisense experiments, that FATP4 is required for fatty acid uptake into intestinal epithelial cells. To further examine the physiological role of FATP4, mice carrying a targeted deletion of FATP4 were generated. Deletion of one allele of FATP4 resulted in 48% reduction of FATP4 protein levels and a 40% reduction of fatty acid uptake by isolated enterocytes. However, loss of one FATP4 allele did not cause any detectable effects on fat absorption on either a normal or a high fat diet. Deletion of both FATP4 alleles resulted in embryonic lethality as crosses between heterozygous FATP4 parents resulted in no homozygous offspring; furthermore, no homozygous embryos were detected as early as day 9.5 of gestation. Early embryonic lethality has been observed with deletion of other genes involved in lipid absorption in the small intestine, namely microsomal triglyceride transfer protein and apolipoprotein B, and has been attributed to a requirement for fat absorption early in embryonic development across the visceral endoderm. In mice, the extraembryonic endoderm supplies nutrients to the embryo prior to development of a chorioallantoic placenta. In wild-type mice we found that FATP4 protein is highly expressed by the epithelial cells of the visceral endoderm and localized to the brush-border membrane of extraembryonic endodermal cells. This localization is consistent with a role for FATP4 in fat absorption in early embryogenesis and suggests a novel requirement for FATP4 function during development.  相似文献   

11.
The fatty acid transport protein (FATP) Fat1p in the yeast Saccharomyces cerevisiae functions in concert with acyl-coenzyme A synthetase (ACSL; either Faa1p or Faa4p) in vectorial acylation, which couples the transport of exogenous fatty acids with activation to CoA thioesters. To further define the role of Fat1p in the transport of exogenous fatty acids, the topological orientation of two highly conserved motifs [ATP/AMP and FATP/very long chain acyl CoA synthetase (VLACS)], the carboxyl 124 amino acid residues, which bind the ACSL Faa1p, and the amino and carboxyl termini within the plasma membrane were defined. T7 or hemagglutinin epitope tags were engineered at both amino and carboxyl termini, as well as at multiple nonconserved, predicted random coil segments within the protein. Six different epitope-tagged chimeras of Fat1p were generated and expressed in yeast; the sidedness of the tags was tested using indirect immunofluorescence and protease protection by Western blotting. Plasma membrane localization of the tagged proteins was assessed by immunofluorescence. Fat1p appears to have at least two transmembrane domains resulting in a N(in)-C(in) topology. We propose that Fat1p has a third region, which binds to the membrane and separates the highly conserved residues comprising the two halves of the ATP/AMP motif. The N(in)-C(in) topology results in the placement of the ATP/AMP and FATP/VLACS domains of Fat1p on the inner face of the plasma membrane. The carboxyl-terminal region of Fat1p, which interacts with ACSL, is likewise positioned on the inner face of the plasma membrane. This topological orientation is consistent with the mechanistic roles of both Fat1p and Faa1p or Faa4p in the coupled transport/activation of exogenous fatty acids by vectorial acylation.  相似文献   

12.
Replacing a cassette of 31 residues from Escherichia coli release factor 1 with the equivalent residues in release factor 2 gave a protein active in codon-specific binding to the ribosome but inactive in peptidyl-tRNA hydrolysis. Such a phenotype is also found unexpectedly with release factor 2 when expressed at high concentration in bacteria. Substituting threonine with the release factor 1 equivalent serine at position 246 within the cassette restored the impaired activity of the chimeric protein, and also that of inactive recombinant release factor 2, both in vitro and in vivo. The differences in activity are not due to posttranslational modifications or a lack of it at this residue. Random mutagenesis of codon 246 suggests that this position is pivotal for the function of the release factor, being able to affect differentially both its binding to the ribosome and its peptide release activities. We propose that amino acid 246 is close to a sharp turn (GGQ motif at position 250), and is essential for transmitting the signal from cognate codon recognition by correctly positioning the peptidyl-tRNA hydrolysis domain of the release factor into the peptidyltransferase center.  相似文献   

13.
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids.  相似文献   

14.
Fatty acid transport proteins   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Fatty acid transport proteins are a family of proteins involved in fatty acid uptake and activation. This review summarizes recent progress in elucidating the function of fatty acid transport proteins. RECENT FINDINGS: Recent experiments clearly establish FATP1 as a regulated fatty acid transporter in both adipose tissue and muscle with important roles in energy homeostasis, thermogenesis and insulin resistance. Knockout of FATP5 in mice show it to be a bifunctional protein required for both hepatic fatty acid uptake and bile acid reconjugation. The most striking phenotype of FATP4 deletion is a defect in skin homeostasis, which may be due to its very long chain acyl-coenzyme A synthetase activity. Fatty acid transport proteins are increasingly being recognized as multifunctional proteins that can mediate the uptake of fatty acids as well as catalyze the formation of coenzyme A derivatives using long-chain and very-long chain fatty acids, bile acids and bile acid precursors as substrates. SUMMARY: Modulation of fatty acid transport protein function can result in altered energy homeostasis and insulin sensitivity, defective skin homeostasis, and altered bile acid metabolism. Both fatty acid uptake and enzymatic activity of fatty acid transport proteins likely contribute to these phenotypes. Future studies are needed to better understand the molecular mechanism of fatty acid transport protein function and the physiological role of FATP2, FATP3, and FATP6.  相似文献   

15.
Fatty acid transport protein 4 (FATP4) is a fatty acyl-CoA synthetase that preferentially activates very long chain fatty acid substrates, such as C24:0, to their CoA derivatives. To gain better insight into the physiological functions of FATP4, we established dermal fibroblast cell lines from FATP4-deficient wrinkle-free mice and wild type (w.t.) mice. FATP4 -/- fibroblasts had no detectable FATP4 protein by Western blot. Compared with w.t. fibroblasts, cells lacking FATP4 had an 83% decrease in C24:0 activation. Peroxisomal degradation of C24:0 was reduced by 58%, and rates of C24:0 incorporation into major phospholipid species (54-64% decrease), triacylglycerol (64% decrease), and cholesterol esters (58% decrease) were significantly diminished. Because these lipid metabolic processes take place in different subcellular organelles, we used immunofluorescence and Western blotting of subcellular fractions to investigate the distribution of FATP4 protein and measured enzyme activity in fractions from w.t. and FATP4 -/- fibroblasts. FATP4 protein and acyl-CoA synthetase activity localized to multiple organelles, including mitochondria, peroxisomes, endoplasmic reticulum, and the mitochondria-associated membrane fraction. We conclude that in murine skin fibroblasts, FATP4 is the major enzyme producing very long chain fatty acid-CoA for lipid metabolic pathways. Although FATP4 deficiency primarily affected very long chain fatty acid metabolism, mutant fibroblasts also showed reduced uptake of a fluorescent long chain fatty acid and reduced levels of long chain polyunsaturated fatty acids. FATP4-deficient cells also contained abnormal neutral lipid droplets. These additional defects indicate that metabolic abnormalities in these cells are not limited to very long chain fatty acids.  相似文献   

16.
Fatty acid transport protein 4 (FATP4) is an integral membrane protein expressed in the plasma and internal membranes of the small intestine and adipocyte as well as in the brain, kidney, liver, skin, and heart. FATP4 has been hypothesized to be bifunctional, exhibiting both fatty acid transport and acyl-CoA synthetase activities that work in concert to mediate fatty acid influx across biological membranes. To determine whether FATP4 is an acyl-CoA synthetase, the murine protein was engineered to contain a C-terminal FLAG epitope tag, expressed in COS1 cells via adenovirus-mediated infection and purified to near homogeneity using alpha-FLAG affinity chromatography. Kinetic analysis of the enzyme was carried out for long chain (palmitic acid, C16:0) and very long chain (lignoceric acid, C24:0) fatty acids as well as for ATP and CoA. FATP4 exhibited substrate specificity for C16:0 and C24:0 fatty acids with a V(max)/K(m) (C16:0)/V(max)/K(m) (C24:0) of 1.5. Like purified FATP1, FATP4 was insensitive to inhibition by triacsin C but was sensitive to feedback inhibition by acyl-CoA. Although purified FATP4 exhibited high levels of palmitoyl-CoA and lignoceroyl-CoA synthetase activity, extracts from the skin and intestine of FATP4 null mice exhibited reduced esterification for C24:0, but not C16:0 or C18:1, suggesting that in vivo, defects in very long chain fatty acid uptake may underlie the skin disorder phenotype of null mice.  相似文献   

17.
Fatty acid transport protein 1 (FATP1), a member of the FATP/Slc27 protein family, enhances the cellular uptake of long-chain fatty acids (LCFAs) and is expressed in several insulin-sensitive tissues. In adipocytes and skeletal muscle, FATP1 translocates from an intracellular compartment to the plasma membrane in response to insulin. Here we show that insulin-stimulated fatty acid uptake is completely abolished in FATP1-null adipocytes and greatly reduced in skeletal muscle of FATP1-knockout animals while basal LCFA uptake by both tissues was unaffected. Moreover, loss of FATP1 function altered regulation of postprandial serum LCFA, causing a redistribution of lipids from adipocyte tissue and muscle to the liver, and led to a complete protection from diet-induced obesity and insulin desensitization. This is the first in vivo evidence that insulin can regulate the uptake of LCFA by tissues via FATP1 activation and that FATPs determine the tissue distribution of dietary lipids. The strong protection against diet-induced obesity and insulin desensitization observed in FATP1-null animals suggests FATP1 as a novel antidiabetic target.  相似文献   

18.
FATP4 (fatty acid transport protein 4; also known as SLC27A4) is the most widely expressed member of a family of six long chain fatty acid transporters. FATP4 is highly expressed in enterocytes and has therefore been proposed to be a major importer of dietary fatty acids. Two independent mutations in Fatp4 cause mice to be born with thick, tight, shiny, "wrinkle-free" skin and a defective skin barrier; they die within hours of birth from dehydration and restricted movements. In contrast, induced keratinocyte-specific deficiency of FATP4 in adult mice causes only mild skin abnormalities. Therefore, whether the loss of FATP4 from skin or a systemic gestational metabolic defect causes the severe skin defects and neonatal lethality remain important unanswered questions. To investigate the basis for the phenotype, we first generated wild-type tetraploid/mutant diploid aggregates that should lead to rescue of any abnormalities caused by loss of FATP4 from the placenta. However, the skin phenotype was not ameliorated. We then generated transgenic mice expressing exogenous FATP4 either widely or specifically in suprabasal keratinocytes, and we bred the transgenes onto the Fatp4(-/-) background. Both modes of FATP4 expression led to rescue of the neonatally lethal skin defects, and the resulting mice were viable and fertile. Keratinocyte expression of an FATP4 variant with mutations in the acyl-CoA synthetase domain did not provide any degree of rescue. We conclude that expression of FATP4 with an intact acyl-CoA synthetase domain in suprabasal keratinocytes is necessary for normal skin development and that FATP4 functions in establishing the cornified envelope.  相似文献   

19.
The Na/Cl-dependent BGT1 transporter has osmoprotective functions by importing the small osmolyte betaine into the cytosol of renal medullary epithelial cells. We have demonstrated previously that the surface localization of the transporter in Madin-Darby canine kidney cells depends on its association with the LIN7 PDZ protein through a PDZ target sequence in the last 5 residues of the transporter (-KETHL). Here we describe a protein kinase C (PKC)-mediated mechanism regulating the association between BGT1 and LIN7. Reduced transport activity paralleled by the intracellular relocalization of the transporter was observed in response to the PKC activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. This activation caused clathrin-dependent internalization of the transporter and its targeting to a recycling compartment that contains the truncated transporter lacking the LIN7 binding motif (BGTDelta5) but not the LIN7 partner of BGT1. The decreased association between BGT1 and LIN7 was demonstrated further by coimmunoprecipitation studies and in vitro binding to recombinant LIN7 fusion protein. The TPA treatment induced phosphorylation of surface BGT1 on serine and threonine residues. However, a greater increase in phosphothreonines than phosphoserines was measured in the wild type transporter, whereas the opposite was true in the BGTSer mutant in which a serine replaced the threonine 612 in the LIN7 association motif (-KESHL). No similar increase in relative phosphoserines or phosphothreonines was found in the BGTDelta5 transporter. Moreover, phosphorylation of threonine 612 in a BGT COOH-terminal peptide impaired its association with recombinant LIN7. Taken together, these data demonstrate that the post-translational regulation of BGT1 surface density is a result of transporter phosphorylation and that threonine 612 is an essential residue in this PKC-mediated regulation.  相似文献   

20.
Insulin and muscle contraction increase fatty acid transport into muscle by inducing the translocation of FAT/CD36. We examined (a) whether these effects are additive, and (b) whether other fatty acid transporters (FABPpm, FATP1, FATP4, and FATP6) are also induced to translocate. Insulin and muscle contraction increased glucose transport and plasmalemmal GLUT4 independently and additively (positive control). Palmitate transport was also stimulated independently and additively by insulin and by muscle contraction. Insulin and muscle contraction increased plasmalemmal FAT/CD36, FABPpm, FATP1, and FATP4, but not FATP6. Only FAT/CD36 and FATP1 were stimulated in an additive manner by insulin and by muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号