首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Occurrence of urease in T strains of Mycoplasma   总被引:23,自引:10,他引:13  
A previously unknown metabolite necessary for growth of T strains of Mycoplasma in artificial culture media has been identified as urea. The source of this metabolite was the mammalian plasma or serum enrichment of the culture medium. Normal horse serum was the most satisfactory native protein enrichment for cultivation of T strains of mycoplasma, and it is believed that its superior performance in agar and fluid culture media is associated with its relatively high urea content (approximately 40 mg/100 ml). T-strain urease activity was maximal at pH 6.0 +/- 0.5. This is also the optimal pH for growth of T strains. Substrate concentrations greater than 1.0% urea were inhibitory to growth and urease activity of T-strain organisms, and optimal urea concentrations in fluid media appeared to lie within the range of 0.008 to 0.01 m. This range of urea concentration permitted maximal growth of T-strain organisms without rapid loss of viability due to excessive ammonia accumulation and rise in pH to lethal levels. T strains of Mycoplasma were cultivated in a serum-free fluid medium containing urea as the only added metabolite and nitrogen source. T strains are the only known human mycoplasmas which exhibit urease activity, and this biochemical marker can be employed as an aid in the detection and identification of T strains of Mycoplasma (urease color test) and in distinguishing T strains from other members of the human Mycoplasma group.  相似文献   

3.
Cells of Proteus mirabilis, previously grown in nutrient broth (NB), exhibited an increase in urease activity during subsequent incubation in mineral medium even when protein biosynthesis was inhibited. During growth in NB, degradation of amino acids obviously led to the formation of nickel-complexing metabolites, and nickel ions were therefore inavailable for maximal expression of enzymatically active urease; this inhibition of urcase biosynthesis was overcome by the addition of nickel to the growth medium, and also by added glucose. Experiments concerning the incorporation of radioactive nickel into urease finally indicated that the observed increase in urease activity was caused by posttranslational insertion of nickel into preformed apourease.  相似文献   

4.
Skokut TA  Filner P 《Plant physiology》1980,65(5):995-1003
Tobacco (cv. Xanthi) XD cells cultured for more than a year on urea as the sole source of nitrogen have urease activities about four times higher than cells which have been cultured on nitrate. When cells which had always been grown on nitrate were transferred to urea, the urease activity in these cells remained at a lower level for eight transfers (40 generations), then gradually increased 4-fold during the next seven to 10 transfers. Cells with high urease activity multiplied 19% more rapidly and accumulated less urea than cells with low urease activity. These findings suggest that elevated urease accelerates urea assimilation; therefore, urea limited growth. Clones of cells with low urease activity responded in the same way as uncloned populations when transferred from nitrate to urea, indicating that high urease cells originate from low urease cells, rather than from a preexisting subpopulation of high urease cells. The urease levels in clones of cells from a population with high urease activity were three to seven times the low urease level. The observed dependence of urease activity on generations of growth on urea was matched with a model in which high urease cells originated at mitosis of low urease cells at a frequency of 8 × 10−5, then multiplied 19% more rapidly than low urease cells. This frequency is about 103 greater than that of other biochemical variants previously isolated from XD cells. The high urease activity gradually declined in cells transferred from urea to other nitrogen sources, but rose rapidly when such cells were returned to urea, indicating the existence within the cells of some form of record of their ancestors' growth on urea. The data indicate the existence of a mechanism for generation, at unusually high frequency, of metastable variants with high urease activity. This mechanism, coupled with enrichment for the variants' progeny by virtue of their higher multiplication rate on urea, can account for the observed slow increase in urease activity of the population. It is suggested that the molecular basis of the urease increase may be gene amplification, based on animal cell models. An alternative hypothesis, namely a specific response induced in all cells by urea and manifested as a very slow adaptive increase in urease, has not been ruled out.  相似文献   

5.
Abstract Using an ureC-lacZ fusion, the expression of urease structural genes of the soil bacterium Rhizobium meliloti strain AK631 was studied in response to different nitrogen sources and nickel contents in the growth medium. The expression of urease genes is repressed by ammonia and is not inducible by urea. Urease activity depends on the nickel concentration of the medium. Nickel uptake is repressed in medium containing ammonia and is not affected by the genes located in the urease operon investigated.  相似文献   

6.
A. R. Cook 《Planta》1968,83(1):1-12
Summary Spirodela oligorrhiza grown in sterile culture was able to use urea as sole source of nitrogen but only when the pH of the culture medium was below 4.3. Plants inoculated into urea media at pH 6.4 initially made little growth and became nitrogen-deficient in appearance and composition although they contained about 100 grams of urea per gram fresh weight of tissue. After a period the pH of the medium usually fell below 4.3 and growth commenced. Growth with other compounds, e.g. ammonium, nitrate or allantoin, as sources of nitrogen was not similarly affected by the pH of the culture medium.Urease activity could always be detected in the tissues of Spirodela oligorrhiza growing on urea. Plants with little or no urease activity soon developed significant activity when inoculated into urea media at pH 4.0. When the pH of the medium was higher there was no increase in urease activity and no growth ensued. Plants growing on urea possessed an activity of about 50 milliunits per gram fresh weight of tissue, but if the pH of the medium fell to 3.5 or lower, the activity present rose to 10 times this level.Urease activity also appeared, in the absence of supplied urea, as plants became increasingly nitrogen-deficient.  相似文献   

7.
氨基甲酸乙酯( EC)是大多数发酵制品中的潜在致癌物,而尿素是EC的最主要前体物质之一,因此需要采取相关措施控制发酵制品中尿素的含量。向酒体中添加脲酶具有安全、高效和处理条件温和等优点,是FDA推荐的降低EC 含量的优先方法。微生物是脲酶的主要来源,可利用其实现脲酶的大规模生产。本文以产脲酶根癌农杆菌Agrobacterium tumefaciens OAH-01为研究对象,考察了该菌株的生长曲线和产酶曲线,证明该菌株产脲酶属生长关联型,且能在较短时间内达到最大产酶量,此外还研究了发酵培养基组成对该菌发酵产酶的影响,通过单因素及正交试验优化确定了最佳发酵培养基组成(g/L):蛋白胨20,酵母粉5,葡萄糖5,FeCl30.54,Na2HPO40.5, KH2 PO40.5,NiSO40.1,起始 pH 7.0。在最适条件下发酵16 h,菌悬液中脲酶酶活可达1.077 U/mL,为优化前的2.4倍。超声破碎后细胞上清中的脲酶活性为0.419 U/mL,为优化前的4.4倍。  相似文献   

8.
Individual gene-targeted hpn and hpn-like mutants and a mutant with mutations in both hpn genes were more sensitive to nickel, cobalt, and cadmium toxicity than was the parent strain, with the hpn-like strain showing the most metal sensitivity of the two individual His-rich protein mutants. The mutant strains contained up to eightfold more urease activity than the parent under nickel-deficient conditions, and the parent strain was able to achieve mutant strain activity levels by nickel supplementation. The mutants contained 3- to 4-fold more and the double mutant about 10-fold more Ni associated with their total urease pools, even though all of the strains expressed similar levels of total urease protein. Hydrogenase activities in the mutants were like those in the parent strain; thus, hydrogenase is fully activated under nickel-deficient conditions. The histidine-rich proteins appear to compete with the Ni-dependent urease maturation machinery under low-nickel conditions. Upon lowering the pH of the growth medium from 7.3 to 5, the wild-type urease activity increased threefold, but the activity in the three mutant strains was relatively unaffected. This pH effect was attributed to a nickel storage role for the His-rich proteins. Under low-nickel conditions, the addition of a nickel chelator did not significantly affect the urease activity of the wild type but decreased the activity of all of the mutants, supporting a role for the His-rich proteins as Ni reservoirs. These nickel reservoirs significantly impact the active urease activities achieved. The His-rich proteins play dual roles, as Ni storage and as metal detoxification proteins, depending on the exogenous nickel levels.  相似文献   

9.
A growth medium and test were developed for rapid detection of urease in fermentative anaerobic bacteria. Using nonselective rumen fluid roll-tube agar medium and the new test, it was confirmed that Peptostreptococcus productus is often the most numerous urease-forming species in human feces. Also, some fecal strains of Ruminococcus albus, Clostridium innocuum, and Clostridium beijerinckii produced urease. Single strains of Fusobacterium prausnitzii, Coprococcus catus, and Streptococcus mitis that were strongly ureolytic on isolation later lost this ability. Urease activity was also detected in many strains of nonselectively isolated rumen species. They include Succinivibrio dextrinosolvens, Treponema sp., Ruminococcus bromii (not previously known to be present in the rumen), Butyrivibrio sp., Bifidobacterium sp., Bacteroides ruminicola, and P. productus. Most P. productus strains contain urease; however, the uniformity of this feature in the other species noted above is not known. The urease in many of these species was not detected if the growth medium contained 0.2% or more (each) yeast extract and Trypticase.  相似文献   

10.
The metabolism of urea by urease enzymes of oral bacteria profoundly influences oral biofilm pH homeostasis and oral microbial ecology. The purpose of this study was to gain insight into the regulation of expression of the low pH-inducible urease genes in populations of Streptococcus salivarius growing in vitro in biofilms and to explore whether urease regulation or the levels of urease expression in biofilm cells differed significantly from planktonic cells. Two strains of S. salivarius harbouring urease promoter fusions to a chloramphenicol acetyltransferase (cat) gene were used: PurelCAT, containing a fusion to the full-length, pH-sensitive promoter; or Pureldelta100CAT, a constitutively derepressed deletion derivative of the urease gene promoter. The strains were grown in a Rototorque biofilm reactor in a tryptone-yeast extract-sucrose medium with or without pH control. Both CAT and urease activities in biofilms were measured at 'quasi-steady state' and after a 25mM glucose pulse. The results showed that CAT expression in PurelCAT was repressed at relatively neutral pH values, and that expression could be induced by acidic pH after carbohydrate challenge. Biofilms of PurelCAT grown at low pH, without buffering, had about 20-fold higher CAT levels, and only a modest further induction could be elicited with carbohydrate pulsing. The levels of CAT in biofilms of PurelCAT grown in buffered medium were slightly higher than those reported for planktonic cells cultured at pH 7.0, and the levels of CAT in Purel-CAT growing at low pH or after induction were similar to those reported for fully induced planktonic cells. CAT activity in Pureldelta100CAT was constitutively high, regardless of growth conditions. Interestingly, urease activity detected in biofilms of the parent strain, S. salivarius 57.1, could be as much as 130-fold higher than that reported for fluid chemostat cultures grown under similar conditions. The higher level of urease activity in biofilms was probably caused by the accumulation of the stable urease enzyme within biofilm cells, low pH microenvironments and the growth phase of populations of cells in the biofilm. The ability of S. salivarius biofilm cells to upregulate urease expression in response to pH gradients and to accumulate greater quantities of urease enzyme when growing in biofilms may have a significant impact on oral biofilm pH homeostasis and microbial ecology in vivo. Additionally, S. salivarius carrying the pH-sensitive urease gene promoter fused to an appropriate reporter gene may be a useful biological probe for sensing biofilm pH in situ.  相似文献   

11.
Characteristics of Ureaplasma urealyticum urease.   总被引:6,自引:1,他引:5       下载免费PDF全文
Sonication of Ureaplasma urealyticum cells grown in a dialysate growth medium effectively separated the cytoplasmic fraction from the membrane fraction, with both fractions relatively free from exogenous contaminating proteins. The urease activity was associated with the cytoplasmic fraction, and the ureaplasmal urease exhibited a specific activity higher than that of crystalline jack bean urease. The enzymatic activity of the ureaplasmal enzyme was optimum at pH 7.5 and was resistant to the chelating agents EDTA and sodium citrate. Sulfhydryl-blocking agents such as HgCl2 and Pb(NO3)2 inhibited the ureaplasmal urease, which was also shown to be particularly sensitive to flurofamide and, to a much lesser extent, to acetohydroxamic acid. Electrophoretic analysis of the proteins of the ureaplasmal cell fractions combined with Western immunoblot with an antiserum to the ureaplasmal urease indicated that the urease constitutes a major component of the cytoplasm and is composed of several 70-kilodalton polypeptides.  相似文献   

12.
The use of biocementation via microbially induced carbonate precipitation (MICP) for improving the mechanical properties of weak soils in the laboratory has gained increased attention in recent years. This study proposes an approach for applying biocementation in situ, by combining the surface percolation of nutrients and cementation solution (urea/CaCl2) with in situ cultivation of indigenous soil urease positive microorganisms under non-sterile conditions. The enrichment of indigenous ureolytic soil bacteria was firstly tested in batch reactors. Using selective conditions (i.e., pH of 10 and urea concentrations of 0.17 M), highly active ureolytic microorganisms were enriched from four diverse soil samples under both oxygen-limited (anoxic) and oxygen-free (strictly anaerobic) conditions, providing final urease activities of more than 10 and 5 U/mL, respectively. The enrichment of indigenous ureolytic soil microorganisms was secondly tested in pure silica sand columns (300 and 1000 mm) for biocementation applications using the surface percolation approach. By applying the same selective conditions, the indigenous ureolytic soil microorganisms with high urease activity were also successfully enriched for both the fine and coarse sand columns. However, the in situ enriched urease activity was highly related to the dissolved oxygen of the percolated growth medium. The results showed that the in situ cultivated urease activity may produce non-clogging cementation over the entire 1000-mm columns, with unconfined compressive strength varying between 850–1560 kPa (for coarse sand) and 150–700 kPa (for fine sand), after 10 subsequent applications of cementation solution. The typically observed loss of ureolytic activity during the repeated application of the cementation solution was recovered by providing more growth medium under selective enrichment conditions, enabling the in situ enriched ureolytic microorganisms to increase in numbers and urease activity in such a way that continued cementation was possible.  相似文献   

13.
Among Trichophyton spp. examined for urease production, T. rubrum was negative, whereas T. mentagrophytes appeared to be the most active species. Urease was not detected in cell-free culture fluids of the tested fungi. The endocellular urease of the test fungi was essentially constitutive. Moreover, addition of urea to the growth medium of these organisms markedly inhibited their mycelial biomass and ureolytic yield. Environmental factors showed variable effects on the test fungi and there was no correlation between mycelial growth and urease activity of these fungi.  相似文献   

14.
Previous (unpublished) studies of the vegetative and conidialdevelopment of several fungi of the genus Aspergillus grownon different nitrogenous substrates showed that urea servedas a good source of nitrogen in all cases investigated. Moredetailed work carried out with Aspergillus tamarii IMI 61268has failed to establish the presence of extracellular or cellbound urease activity but shows high levels of activity in aqueousextracts of this fungus. In surface-grown, sporulating cultures,urease activity increased prior to conidiation and disappearedrapidly during the reproductive phase. Similar patterns of enzymicactivity were obtained with cultures grown on urea and ammoniaas sole sources of nitrogen. In submerged, shaken flask cultures using ammonia as the solenitrogenous substrate, conidiation was inhibited and ureaseactivity continued to increase until such time as the residualammonia in the medium became depleted. Thereafter the ureaseactivity as well as total soluble protein showed a sharp decrease.The results suggest that the enzyme showing urease activityin this organism is not substrate-inducible and one of its functionsmay be that of a storage protein whose breakdown products assistin the continued growth and especially in conidial development.  相似文献   

15.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

16.
Urease testing and yeast taxonomy   总被引:1,自引:0,他引:1  
When urease production was assayed by the hydrolysis of [14C]urea, all basidiomycetous yeasts tested, including the Cryptococcus vishniacii complex (previously reported urease negative), produced significant amounts of 14CO2. The Schizosaccharomycetaceae were the only urease-positive ascomycetous yeasts tested. Yarrowia lipolytica was urease negative. The stoichiometry of [14C]urea hydrolysis paralleled by Roberts' rapid urea hydrolysis (RUH) test indicated that causes of anomalous results in conventional urease testing include acidification and alkalinization of the test medium by products of endogenous metabolism and autolysis rather than urease activity. Anomalous results also occurred when cells were grown on media containing the chelating agent ethylenediaminetetraacetic acid (EDTA) prior to RUH. The addition of EDTA to a complex natural medium inhibited urease production in all yeasts reportedly growing at 35 degrees C (and all other yeasts tested), except Filobasidiella (Cr.) neoformans var. neoformans (NIH 12). The RUH test could differentiate at the varietal level: Fil. (Cr.) neoformans var. neoformans was about 10 times more resistant to EDTA in media used for the growth of cells prior to RUH testing than was Fil. neoformans var. bacillispora (Cr. neoformans var. gattii) (NIH 191). Urease production by Fil. neoformans var. bacillispora was specifically restored to half maximal activity by the addition of 22 microM Ni+2 (as NiCl2) to a growth medium containing 0.100 mM EDTA.  相似文献   

17.
Abstract

Urease is involved in the formation of carbonate sediments by microbial-induced calcium carbonate precipitation (MICP), and Sporosarcina pasteurii used extensively in this technique owing to its high urease production. In this study, a simple two-step culture method with the appropriate medium was developed to enhance the urease activity of S. pasteurii. Urea played an important role in the culture process, particularly during the pre-cultivation step and the newly developed method improved both urease activity and specific urease activity. Furthermore, the increase in urease activity by MICP resulted in increased production of calcium carbonate and better strength of bio-cemented sand.  相似文献   

18.
Urease activity was measured using whole cells of both long (swarming) and short (nonswarming) populations of Proteus mirabilis from casein hydrolysate agar (CHA) and broth (CHB) cultures, and from brain heart infusion broth (BHIB) cultures. Urease is a constitutive enzyme for both long and short cells, but its activity was tremendously increased when urea was incorporated into the media. Urease production was also affected by culture age and media used. Before exponential phase, urease activity was very low, and it increased to its highest point after about 4 h in BHIB and 8 h in both CHA and CHB cultures at 37 degrees C. Long cells had higher urease activity than did short cells when grown on CHA, and was also expressed by two different strains cultured in BHIB. Strain PM23, in BHIB, was able to form long cells (swarming cells) to a maximum proportion after about 4 h, but strain IM47 could not differentiate in any of the liquid media. The former had more urease when swarming differentiation was initiated. PM23 grew relatively faster than IM47 when the former began to differentiate, but this fast growth could not be observed when nutrient broth or minimal medium was used. These observations suggest that long or swarming cells are "faster growing" rather than "nongrowing bacteria".  相似文献   

19.
In Pseudomonas aeruginosa the formation of urease, histidase and some other enzymes involved in nitrogen assimilation is repressed by ammonia in the growth medium. The key metabolite in this process appears to be glutamine or a product derived from it, since ammonia and glutamate did not repress urease and histidase synthesis in a mutant lacking glutamine synthetase activity when growth was limited for glutamine. The synthesis of these enzymes was repressed in cells growing in the presence of excess glutamine. High levels of glutamine were also required for the derepression of NADP-dependent glutamate dehydrogenase formation in the glutamine synthetase-negative mutant.  相似文献   

20.
Ureaplasma urealyticum cells were lysed by osmotic shock or by digitonin. The membrane fraction contained four to ten times as much protein as the cytoplasmic fraction. These values are in large excess of those reported for classical mycoplasmas, suggesting that the Ureaplasma membrane fraction was heavily contaminated with proteins derived from the growth medium. The U. urealyticum urease activity was localized in the cytoplasmic fraction, whereas the adenosine triphosphatase activity was localized in the membrane fraction. Significant urease activity could be detected also in nonviable cells. Urea, at concentrations above 0.25 M, was mycoplasmastatic to Acholeplasma laidlawii, Mycoplasma hominis, and U. urealyticum, so that the Ureaplasma urease did not afford preferential protection against urea toxicity. The intracellular localization of the urease would be expected to release ammonia from urea in the cytoplasm. The ammonia will take up protons to become ammonium ions. It can be hypothesized that the intracellular NH4+ plays a role in proton elimination or acid-base balance, which might be coupled to an energy producing ion gradient and/or transport mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号