首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

2.
3.
Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS).Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase.Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination.We found that after 4-6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2 and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal.Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release.  相似文献   

4.
In this paper we investigated the possible involvement of prostaglandin E synthases (PGESs) in compensatory mechanism. Our findings showed that microsomal (m)PGES-1 expression was significantly up-regulated in COX knock-out (K/O) cells whereas the expression of cytosolic PGES was not changed indicating that the induction of mPGES-1 may, at least in part, contribute to the substantial increase of PGE2 production in COX K/O cell lines. The selective up-regulation of mPGES-1 in COX-2 K/O cells suggests that mPGES-1 may be metabolically coupled with COX-1 for PGE2 formation. Addition of arachidonic acid caused significant induction of mPGES-1 and COX-2 in WT cells, whereas COX-1 and cPGES were not affected. Our earlier and the current studies demonstrate the coregulation of cPLA2, COX, and mPGES-1, in PGE2 synthesis pathway, and that these enzymes contribute to the elevation of PGE2 level when one COX isoform is absent.  相似文献   

5.
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. For both COX and PGES, three isoforms have been described: in cartilage, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. COX-3 (a variant of COX-1) and mPGES-2 have been recently cloned but little is known about their expression and regulation in cartilage, as is also the case for 15-PGDH. We investigated the regulation of the genes encoding COX and PGES isoforms during mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) for 2 to 24 hours. After determination of the amount of PGE2 released in the media (enzyme immunoassay), mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blotting respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time-dependent manner. This was not due to the synthesis of IL-1, since pretreatment with interleukin 1 receptor antagonist (IL1-Ra) did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression, whereas COX-3 and mPGES-2 mRNA expression was not modified. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours, suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. We conclude that, along with COX-2, dynamic compression induces mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

6.
The developing central nervous system is a primary target of ethanol toxicity. The teratogenic effect of ethanol may result from its action on prostaglandins. Prostaglandins are generated through the release of arachidonic acid (AA) by the action of cytosolic phospholipase A(2) (cPLA(2)) on membrane-bound phospholipids and the catalytic conversion of AA to prostaglandin E(2) (PGE(2)) by cyclo-oxygenase (COX). COX is expressed in two isoforms, constitutive COX1 and inducible COX2. Cultured astrocytes and neurons from immature cerebral cortex were used as in vitro models to investigate the effect of ethanol on PGE(2) synthesis. In both cell types, neither the activity nor the expression of cPLA(2) was affected by ethanol. PGE(2) was synthesized by astrocytes and neurons. Ethanol (200-400 mg/dL for 24 h) significantly increased PGE(2) production in both cell types and the ethanol-induced increase in PGE(2) accumulation in astrocytes was significantly greater than in neurons. These increases resulted from the effects of ethanol on COX. Overall COX activity was up-regulated by ethanol in astrocytes and neurons, and indomethacin, a nonselective blocker for COX, eliminated the ethanol-induced increases of COX activity in both cell types. Increased COX activity in astrocytes resulted from an increase in COX2 expression. NS-398, a selective COX2 blocker, completely inhibited ethanol-induced alterations in COX activity. In neurons, however, ethanol had a direct effect on COX activity in the absence of a change in COX expression. NS-398 only partially blocked ethanol-induced increases in neuronal COX activity. Thus, astrocytes are a primary target of ethanol and ethanol-induced increases in glial PGE(2) synthesis are mediated by COX, principally COX2. Ethanol toxicity may be mediated through PGE(2) in immature cortical cells.  相似文献   

7.
Cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 controls many aspects of colon cancer development, modulating from apoptosis resistance and cell proliferation to angiogenesis, invasion, and metastasis. Here, we investigated the role of different phospholipases (PL)A2 in supplying arachidonic acid (AA) for COX-2-dependent PGE2 generation and signaling pathways involved in activation of colon cancer cells by a physiologically relevant stimulus. To emulate the hypertonic environment found physiologically in colon, the human colon cancer cell line Caco-2 was maintained in hypertonic complete DMEM medium. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked AA release, COX-2 induction and PGE2 generation. Selective secretory (s)PLA2 and calcium-independent (i)PLA2 inhibitors did not modify PGE2 generation, while either COX-2 or cytosolic (c)PLA2 inhibitors completely inhibited PGE2 generation. cPLA2-α was responsible for AA supply for PGE2 generation, but had no role in COX-2 induction. Mitogen-activated protein (MAP) kinases, ERK 1/2, p38, and JNK, participated in the signaling events that lead to PGE2 generation by modulating AA release, but only ERK 1/2 was involved in COX-2 upregulation. Our results indicate that hypertonic stress activates PGE2 generation by Caco-2 cells through a mechanism dependent on MAP kinase-regulated AA mobilization, increased cPLA2-α activity, and COX-2 induction.  相似文献   

8.
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   

9.
CD40, a member of the tumour necrosis factor‐α receptor family, is constitutively expressed by cells of haematopoietic and non‐haematopoietic origin, including fibroblasts. Signalling through this receptor molecule regulates inflammatory mediator secretion by many cell types. The work has been performed in healthy subjects and the authors studied, by cellular culture, flow cytometric analysis and ELISA assay, the expression of CD40 and PGE2 (prostaglandin E2) generation on gingival fibroblasts stimulated by β‐AR (β‐adrenoceptor) agonists. Herein, the authors demonstrate that β‐AR subtype activation via their own specific agonists markedly increased CD40 expression on human gingival fibroblasts. This effect was prevented by β‐AR subtype‐specific antagonists. In addition, gingival fibroblast β‐AR stimulation resulted in an increase in PGE2 generation. The inhibition of PLA2 (phospholipase A2) and COX‐1 (cyclo‐oxygenase‐1) but not COX‐2 impaired β‐AR increase of PGE2, an effect that was restored by the addition of low concentrations of PGE2, suggesting that PGE2 generation is implicated in the mechanism underlying β‐AR‐agonist‐mediated CD40 overexpression. Our work has revealed an endogenous β‐AR mediator network involving gingival fibroblasts.  相似文献   

10.
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β‐protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long‐term treatment with nonsteroidal anti‐inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX‐2). Although the levels of COX‐2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human‐ or mouse‐derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX‐2 mediates the reciprocal regulation of interleukin‐1β (IL‐1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX‐2 regulates the synthesis of IL‐1β in a PGE2‐dependent manner. Moreover, COX‐2‐derived PGE2 signals the activation of the PI3‐K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF‐κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL‐1β synthesis. The secretion of IL‐1β from glioblastoma cells in turn stimulates the expression of COX‐2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX‐2 regulation of BACE‐1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX‐2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX‐2‐induced AD but also initially define the therapeutic targets of AD.  相似文献   

11.
Lipopolysaccharide (LPS)/Toll‐like receptor 4 (TLR4)‐mediated signaling pathways have caught the attention of strategies designed for rheumatoid arthritis (RA). In this study, we identified that cPLA2α acted as a modulator of LPS‐induced VCAM‐1 expression and THP‐1 (human acute monocytic leukemia cell line) adherence. Treatment of RA synovial fibroblasts (RASFs) with LPS, a TLR4 agonist, promoted the VCAM‐1 expression and THP‐1 adherence which were decreased by pretreatment with a selective cytosolic phospholipase A2 (cPLA2) inhibitor (AACOCF3), implying the involvement of cPLA2α in these responses. This notion was further confirmed by knockdown of cPLA2α expression by transfection with cPLA2α small interfering RNA (siRNA) leading to a decrease in VCAM‐1 expression and THP‐1 adherence induced by LPS. Subsequently, the LPS‐stimulated cPLA2α phosphorylation was attenuated by pretreatment with a MEK1/2 inhibitor (U0126), suggesting that LPS‐stimulated cPLA2α phosphorylation and activity are mediated through an ERK‐dependent mechanism. Moreover, COX‐2‐derived PGE2 production appeared to involve in LPS‐induced VCAM‐1 expression which was attenuated by pretreatment with selective COX‐2 inhibitors (NS‐398 and celecoxib), transfection with COX‐2 siRNA, or PGE2 receptor antagonists. In addition, pretreatment with ecosapentaenoic acid (EPA), a substrate competitor of arachidonic acid (AA), also blocked LPS‐induced VCAM‐1 mRNA and protein expression, and THP‐1 adherence. Collectively, these results suggest that LPS‐induced VCAM‐1 expression and adhesion of THP‐1 cells are mediated through the TLR4/ERK/cPLA2α phosphorylation and COX‐2 expression/PGE2 synthesis in RASFs. J. Cell. Physiol. 223: 480–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
While many observations indicate that prostaglandins may act as positive regulators of hepatocyte proliferation, the underlying mechanisms are not known. We have examined some of the signal pathways in the growth response induced by prostaglandins in hepatocytes, with particular focus on adenylyl cyclase and phosphoinositide-specific phospholipase C. Adult rat hepatocytes were cultured as primary monolayers in serum-free medium in the presence of EGF and insulin. PGE2 or PGF (added 0-3 h after plating) enhanced the incorporation of [3H]-thymidine into DNA (measured at 50 h); at 100 γM the stimulation was about threefold. PGI2 and PGD2 also showed significant but smaller stimulatory effects. No significant increase in the level of cyclic AMP (cAMP) was detected in response to any of the prostaglandins. Low concentrations of glucagon (0.1-10 nM), a potent activator of hepatic adenylyl cyclase, or 8-bromo-cAMP (0.1-10 γM) enhanced the DNA synthesis. When 8-bromo-cAMP was used in maximally effective concentrations, no further stimulation was obtained by combining it with glucagon, whereas the effects of PGE2 and 8-bromo-cAMP were completely additive. All the prostaglandins also showed additivity with the effect of glucagon on the DNA synthesis. PGE2, PGF, PGI2, and PGD2 increased intracellular inositol-1,4,5-trisphosphate (InsP3), with a relative order of efficacy roughly corresponding to their activity as stimulators of DNA synthesis. Increases in cytosolic free Ca2+, as measured in single cells, were elicited in a majority of the hepatocytes by all these prostaglandins at 1 γM. Supramaximal concentrations of vasopressin, a strong activator of phospholipase C in hepatocytes, acted additively with PGE2 on the DNA synthesis. Pretreatment of the hepatocytes with a concentration of pertussis toxin that prevented the inhibitory effect of PGE2 on glucagon-induced cAMP accumulation did not abolish the ability of PGE2 to stimulate the DNA synthesis. The results do not support a role for adenylyl cyclase activation in the stimulatory effect of prostaglandins on hepatocyte growth. While the data are compatible with an involvement of phosphoinositide-specific phospholipase C in the growth-promoting effect of prostaglandins in cultured rat hepatocytes, they suggest this may not be the sole mechanism. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Acyl coenzyme A synthetase long-chain family members (ACSLs) are a family of enzymes that convert long-chain free fatty acids into their acyl-CoAs and play an important role in fatty acid metabolism. Here we show the role of ACSL isozymes in interleukin (IL)-1β-induced arachidonic acid (AA) metabolism in rat fibroblastic 3Y1 cells. Treatment of 3Y1 cells with triacsin C, an ACSL inhibitor, markedly enhanced the IL-1β-induced prostaglandin (PG) biosynthesis. Small interfering RNA-mediated knockdown of endogenous Acsl4 expression increased significantly the release of AA metabolites, including PGE2, PGD2, and PGF, compared with replicated control cells, whereas knockdown of Acsl1 expression reduced the IL-1β-induced release of AA metabolites. Experiments with double knockdown of Acsl4 and intracellular phospholipase A2 (PLA2) isozymes revealed that cytosolic PLA2α, but not calcium-independent PLA2s, is involved in the Acsl4 knockdown-enhanced PG biosynthesis. Electrospray ionization mass spectrometry of cellular phospholipids bearing AA showed that the levels of some, if not all, phosphatidylcholine (PC) and phosphatidylinositol species in Acsl4 knockdown cells were decreased after IL-1β stimulation, while those in control cells were not so obviously decreased. In Acsl1 knockdown cells, the levels of some AA-bearing PC species were reduced even in the unstimulated condition. Collectively, these results suggest that Acsl isozymes play distinct roles in the control of AA remodeling in rat fibroblasts: Acsl4 acts as the first step of enzyme for AA remodeling following IL-1β stimulation, and Acsl1 is involved in the maintenance of some AA-containing PC species.  相似文献   

14.
Platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-β1 (TGF-β1) are critically involved in idiopathic pulmonary fibrosis by inducing the proliferation and transdifferentiation of lung fibroblasts. In the present study, we examined the impact of diallyl disulfide (DADS), a garlic-derived compound, on such pathological conditions. DADS showed profound inhibitory effects on the PDGF-BB-induced proliferation of human and mouse lung fibroblasts. DADS also abrogated the TGF-β1-induced expression of α-smooth muscle actin, type I collagen and fibronectin. Following treatment with DADS, the expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) were found to be markedly enhanced, which in turn led to elevated cAMP levels in lung fibroblasts. Notably, the effect of DADS was largely abolished in the presence of either COX inhibitor indomethacin or siRNA-targeting COX-2, or in the absence of the PGE2 receptor EP2, supporting an essential role for the COX-2–PGE2–cAMP autocrine loop. Furthermore, we demonstrated that the upregulated expression of COX-2 was a result of increased level of histone 3 acetylation at COX-2 locus in DADS-treated cells. Together, these results suggest that DADS, by inducing COX-2 expression, may have therapeutic potential in treating lung fibrosis.  相似文献   

15.
We have previously shown in HK-2 cells that ATRA (all-trans-retinoic acid) up-regulates HIF-1α (hypoxia-inducible factor-1α) in normoxia, which results in increased production of renal protector VEGF-A (vascular endothelial growth factor-A). Here we investigated the role of COXs (cyclooxygenases) in these effects and we found that, i) ATRA increased the expression of COX-1 and COX-2 mRNA and protein and the intracellular levels (but not the extracellular ones) of PGE2. Furthermore, inhibitors of COX isoenzymes blocked ATRA-induced increase in intracellular PGE2, HIF-1α up-regulation and increased VEGF-A production. Immunofluorescence analysis found intracellular staining for EP1-4 receptors (PGE2 receptors). These results indicated that COX activity is critical for ATRA-induced HIF-1α up-regulation and suggested that intracellular PGE2 could mediate the effects of ATRA; ii) Treatment with PGE2 analog 16,16-dimethyl-PGE2 resulted in up-regulation of HIF-1α and antagonists of EP1-4 receptors inhibited 16,16-dimethyl-PGE2- and ATRA-induced HIF-1α up-regulation. These results confirmed that PGE2 mediates the effects of ATRA on HIF-1α expression; iii) Prostaglandin uptake transporter inhibitor bromocresol green blocked the increase in HIF-1α expression induced by PGE2 or by PGE2-increasing cytokine interleukin-1β, but not by ATRA. Therefore only intracellular PGE2 is able to increase HIF-1α expression. In conclusion, intracellular PGE2 increases HIF-1α expression and mediates ATRA-induced HIF-1α up-regulation.  相似文献   

16.
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2), reflecting cytosolic phospholipase A2 α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2 potently induced macrophage migration while different FFAs and PGD2 had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2 levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2 with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.  相似文献   

17.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

18.
K V Honn  W Chavin 《Life sciences》1978,22(7):543-552
The in vitro modulating effects of the E and F series prostaglandins upon the cAMP and cortisol output of normal human adrenal dice were evaluated with time and compared to the effects of ACTH. PGE1 and PGE2 significantly increased human adrenal cAMP levels; cortisol output increased in a dose related manner. Although the cortisol levels produced by E prostaglandins and ACTH were quantitatively similar, on a molar basis ACTH was greater than 106 fold more effective. PGE, PGF, PGF and PGF depressed adrenal cAMP, except PGF and PGF at 100 μg/ml. PGF and PGF depressed cortisol levels at all doses. Similarly, PGF and PGF also depressed cortisol output, except PGF at 100 μg/ml which was stimulatory. In both series of prostaglandins the temporal responses were dose related in regard to the cyclic nucleotide and steroid alterations. The findings demonstrate the E and F series prostaglandins act antagonistically in respect to cAMP and cortisol output. In addition, as the cAMP level and cortisol output are not always correlated, it appears that these prostaglandin mediated events are separable. The relationship between adrenal prostaglandins and cyclic nucleotides, therefore, invites a more sophisticated second messenger concept in terms of adrenocortical function, than currently proposed.  相似文献   

19.
Adipocytes and the precursor cells express two types of cyclooxygenase (COX) isoforms that are involved in the biosynthesis of different types of prostaglandins (PGs) exerting opposite effects on adipogenesis. To evaluate the role of the inducible COX-2 isoform in the control of the differentiation and maturation of adipocytes, we employed an antisense technology to suppress specifically the expression of COX-2 in adipocytes. Cultured 3T3-L1 preadipocytes were transfected stably with a mammalian expression vector having the full-length cDNA encoding mouse COX-2 oriented in the antisense direction. The cloned transfectants with antisense COX-2 exhibited stable expression of antisense RNA for COX-2, which was accompanied by the suppressed expression of mRNA and protein levels of sense COX-2. However, almost no alteration in the expression of COX-1 was detected. The transfectants with antisense COX-2 showed significant decreases in the delayed synthesis of PGE2 involving the inducible COX-2 in response to cell stimuli. By contrast, the immediate synthesis of PGE2 associated with the constitutive COX-1 was not influenced appreciably. The stable expression of antisense mRNA of COX-2 resulted in significant stimulation of fat storage during the maturation phase without affecting the cell proliferation associated with the clonal expansion phase. The gene expression studies revealed higher expression levels of adipocyte-specific markers in the transfectants with antisense COX-2, indicating the mechanism that stimulates adipogenesis program. The up-regulation of fat storage was appreciably prevented by anti-adipogenic prostanoids, such as PGE2 and PGF, during the maturation phase. These results suggest that COX-2 is more preferentially involved in the generation of endogenous anti-adipogenic prostanoids during the maturation phase of adipocytes.  相似文献   

20.
In this study, the ability of Bothrops asper snake venom (BaV) to increase the production of prostaglandins PGE2 and PGD2 was assessed in a mouse model in vivo and in inflammatory cells in vitro. In addition, the expressions of COX-1 and COX-2 were assessed. BaV induced an increment in the in vivo synthesis of PGE2 and PGD2, together with an enhanced expression of COX-2, but not of COX-1. However, enzymatic activities of COX-1 and COX-2 were increased. Incubation of isolated macrophages and neutrophils with a sub-cytotoxic concentration of BaV in vitro resulted in increased release of PGE2 and PGD2 by macrophages and PGE2 by neutrophils, concomitantly with an increment in the expression of COX-2, but not of COX-1 by both cell types. Our results demonstrate the ability of BaV to promote the expression of COX-2 and to induce the synthesis of proinflammatory prostaglandins. Macrophages and neutrophils may be important targets for this venom under in vivo situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号