首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immortal strand hypothesis proposes that asymmetrically dividing stem cells (SCs) selectively segregate chromosomes that bear the oldest DNA templates. We investigated cosegregation in neural stem cells (NSCs). After exposure to the thymidine analogue 5-bromo-2-deoxyuridine (BrdU), which labels newly synthesized DNA, a subset of neural precursor cells were shown to retain BrdU signal. It was confirmed that some BrdU-retaining cells divided actively, and that these cells exhibited some characteristics of SCs. This asymmetric partitioning of DNA then was demonstrated during mitosis, and these results were further supported by real time imaging of SC clones, in which older and newly synthesized DNA templates were distributed asymmetrically after DNA synthesis. We demonstrate that NSCs are unique among precursor cells in the uneven partitioning of genetic material during cell divisions.  相似文献   

2.
A culture of cells was isolated from the organ of Corti of 2-week-old H-2Kb-tsA58 (Immortomouse) transgenic mice. All cells of these mice harbor a mutant of the simian virus 40 A-gene, encoding a thermolabile large T-antigen (Tag) protein. At 33 degrees C the Tag protein is functional and induces cell proliferation, but at 39 degrees C it is rapidly denatured and inactivated. Isolated organ of Corti cells growing at 33 degrees C were predominantly small, rounded or fusiform and proliferated rapidly. When moved to 39 degrees C, the cells reduced their rate of proliferation and differentiated into specific morphological phenotypes. Four cell lines were cloned by limiting dilution and characterized by immunofluorescence microscopy and Western blot. The cell lines, named OC-k1, OC-k2, OC-k3 and OC-k4, have been passaged at least 50 times with retention of a stable phenotype. These cell lines were all positive for the neuroepithelial precursor cell marker nestin and for the inner ear cell marker OCP2. In addition, the cells showed reactivity to epithelial and neuronal cell markers, but with a pattern of protein expression different for each clone and different between cells of the same clone growing at 33 degrees C or 39 degrees C. Some of the clones exhibited asymmetric cell division which is a characteristic commonly ascribed to stem cells. These cell lines can be used advantageously to study mechanisms and signals involved in the control of cell differentiation and morphogenesis of the mammalian inner ear and to isolate inner ear specific proteins.  相似文献   

3.
Abstract: Cyclic GMP (cGMP) is a molecular messenger involved in diverse cellular processes. Recently, cGMP-dependent protein kinase (cGK) type II was determined to be a regulator of endochondral ossification and bone growth, identifying a role for cGMP in the regulation of cellular proliferation. Here, we demonstrate the presence of cGK type I (cGKI) in cells of the developing trigeminal ganglia. cGKI occurs in some proliferating precursors as evidenced by double labeling with an antibody to cGKI and 5-bromo-2'-deoxyuridine(BrdU) incorporation. Inhibition of cGKI with KT5823 or Rp -8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphorothioate ( Rp -8-pCPT-cGMPS) in chick embryos results in a 30–40% decrease in trigeminal ganglia cell number, and this effect is independent of nitric oxide synthase (NOS). In addition, inhibition of cGKI with Rp -8-pCPT-cGMPS results in a 60% decrease in BrdU incorporation in the trigeminal ganglia of embryonic day 5 chicks. We find that PC12 cells expressing cGKI proliferate more rapidly and incorporate more BrdU than do control cells. The cGKI inhibitor Rp -8-pCPT-cGMPS decreases proliferation and BrdU incorporation in transfected PC12 cells but has no effect on control cells. The PC12 cells do not express NOS, indicating that this effect is also independent of NOS. Thus, cGKI regulates the proliferation of sensory neurons as a result of activation of a NOS-independent pathway, representing a novel pathway by which the number of sensory neurons is regulated.  相似文献   

4.
The tumor-associated-Ag MART-1 is expressed by most human melanomas. The genes encoding an alphabeta TCR from a MART-1-specific, HLA-A2-restricted, human T cell clone have been efficiently transferred and expressed in human PBL. These retrovirally transduced PBL cultures were MART-1 peptide reactive, and most cultures recognized HLA-A2+ melanoma lines. Limiting dilution clones were generated from three bulk transduced PBL cultures to investigate the function of individual clones within the transduced cultures. Twenty-nine of 29 CD8+ clones specifically secreted IFN-gamma in response to T2 cells pulsed with MART-1(27-35) peptide, and 23 of 29 specifically secreted IFN-gamma in response to HLA-A2+ melanoma lines. Additionally, 23 of 29 CD8+ clones lysed T2 cells pulsed with the MART-1(27-35) peptide and 15 of 29 lysed the HLA-A2+ melanoma line 888. CD4+ clones specifically secreted IFN-gamma in response to T2 cells pulsed with the MART-1(27-35) peptide. TCR gene transfer to patient PBL can produce CTL with anti-tumor reactivity in vitro and could potentially offer a treatment for patients with metastatic melanoma. This approach could also be applied to the treatment of other tumors and viral infections. Additionally, TCR gene transfer offers unique opportunities to study the fate of adoptively transferred T cells in vivo.  相似文献   

5.
We have investigated the time course of rod photoreceptor determination in the goldfish retina. Rod precursor cells located in the outer nuclear layer of the mature retina continuously generate rod photoreceptors. In this study, we asked when rod precursor cells begin to express opsin, which would signal their commitment to the rod pathway of differentiation. There are three possibilities: a rod precursor could express opsin while still mitotic, at or shortly after the terminal mitosis but before differentiation, or during differentiation. We used immunocytochemistry with antibodies against bromodeoxyuridine, BrdU (a thymidine analogue) and against opsin to determine when during the mitotic history of a cell the expression of opsin first occurred, taking a double labelled cell to be evidence of commitment to the rod cell fate. We found that the first double labelled cells appeared at 4 days after BrdU injection. The number of double labelled cells increased to peak at 10 days, and then fell. These results support the hypothesis that dividing rod precursor cells are probably multipotent stem cells not committed to the rod cell fate.  相似文献   

6.
To gain insight into NK cell dynamics, we investigated the turnover and proliferation rates of NK cells in normal and lymphopenic conditions. In contrast to previous reports suggesting a very rapid turnover of NK cells, continuous 5-bromo-2'-deoxyuridine (BrdU)-labeling studies demonstrated that the time necessary for labeling 50% of splenic NK cells in mature mice was 17 days, similar to the rate of labeling of memory T cells. In contrast, in young mice, splenic NK cells labeled very rapidly with BrdU, although cell cycle analyses and BrdU pulse-labeling studies suggested that most of this proliferation occurred in a precursor population. A somewhat larger percentage of bone marrow NK cells was cycling, suggesting that these proliferating cells are the precursors of the mostly nondividing or slowly dividing splenic NK cells. Splenic NK cells from mature mice also did not proliferate significantly when transferred to normal mice, but did proliferate when transferred to irradiated mice. Thus, NK cells, like T cells, undergo homeostatic proliferation in a lymphopenic environment. Homeostatic proliferation of NK cells was not dependent on host cell class I molecules or host production of IL-15. Nevertheless, the number of recovered NK cells was much lower in IL-15(-/-) hosts. These results suggest that IL-15 is not essential for homeostatic proliferation of NK cells, but is necessary for survival of the NK cells. Our results provide important basic information concerning the production and replacement of NK cells.  相似文献   

7.
Sui Y  Horne MK  Stanić D 《PloS one》2012,7(2):e31549
Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons.  相似文献   

8.
The functional capabilities of cells leaving the thymus   总被引:6,自引:0,他引:6  
There has been a controversy for many years over the functional status of cells that leave the thymus (thymus migrants) to populate the peripheral lymphoid organs. Are they immunoincompetent like cortical thymocytes and so probably derived from them, or are they functionally mature like medullary thymocytes? Until recently the techniques used to assess putative thymus migrants have been indirect, but it is now possible to measure the function of recent thymus migrants directly. We used intrathymic injection of a solution of fluorescein isothiocyanate to label thymocytes, and used electronic cell sorting to purify the fluorescent cells that accumulate in the periphery over the following 3 to 4 hr. The migrants have been enriched from an original frequency of about 1:1000 in lymph nodes and spleen, to greater than 98% purity. These cells have been compared with normal peripheral T cells for proliferative and cytotoxic precursor activity in a high cloning efficiency, lectin-induced, limit dilution culture system and in an allospecific limit dilution system. The frequency of precursors of proliferative lymphocytes and cytotoxic lymphocytes and the size of the clones produced is the same for recent migrants and peripheral T cells. Thus by the criteria of proliferation and cytotoxic responses to mitogens and generation of allospecific CTL, thymus migrants, a few hours after their emigration from the thymus, are fully immunocompetent; we therefore see no evidence of a post-thymic precursor-type cell that requires major maturation steps after leaving the thymus.  相似文献   

9.
The human open reading frame C2orf40 encodes esophageal cancer-related gene-4 (Ecrg4), a newly recognized neuropeptide-like precursor protein whose gene expression by cells in vitro, over-expression in mice in vivo, and knock-down in zebrafish affects cell proliferation, migration and senescence, progenitor cell survival and differentiation, and inflammatory function. Unlike traditionally secreted neuropeptide precursors, however, we find that Ecrg4 localizes to the epithelial cell surface and remains tethered after secretion. Here, we used cell surface biotinylation to establish that 14-kDa Ecrg4 localizes to the cell surface of prostate (PC3) or kidney (HEK) epithelial cells after transfection. Accordingly, this Ecrg4 is resistant to washing cells with neutral, high salt (2 M NaCl), acidic (50 mM glycine, pH 2.8), or basic (100 mM Na(2)CO(3), pH 11) buffers. Mutagenesis of Ecrg4 established that cell tethering was mediated by an NH(2)-terminus hydrophobic leader sequence that enabled both trafficking to the surface and tethering. Immunoblotting analyses, however, showed that different cells process Ecrg4 differently. Whereas PC3 cells release cell surface Ecrg4 to generate soluble Ecrg4 peptides of 6-14 kDa, HEK cells do neither, and the 14-kDa precursor resembles a sentinel attached to the cell surface. Because a phorbol ester treatment of PC3 cells stimulated Ecrg4 release from, and processing at, the cell surface, these data are consistent with a multifunctional role for Ecrg4 that is dependent on its cell of origin and the molecular form produced.  相似文献   

10.
Cell proliferation was examined in the back and tail epidermis of larval Xenopus laevis using bromodeoxyuridine (BrdU). The BrdU labeling index of the back epidermis increased temporally at stage 59, followed by a rapid decrease to the same level as at stage 51. The temporal increase in cell proliferation of the back epidermis produced a new epidermal layer composed of basal cells. In vitro analysis showed that tri-iodothyronine (T3) promotes cell proliferation of basal cells but suppresses that of skein cells. Immunohistochemical studies showed that the newly formed basal cell layer functions as adult precursor cells which produce the adult epidermal cells. In contrast to the back epidermis, the labeling index of the tail epidermis decreased from stage 57. However, when the tail skin was transplanted to the back area, cell proliferation in the tail epidermis increased to the same level as that of the normal back epidermis. Cell proliferation of the back epidermis was not suppressed by transplanting the skin to the tail area. These results suggest that some promoting factors are produced in the body region and regulate the number of adult precursor cells, which determine the developmental fate of the larval skin.  相似文献   

11.
Proteoglycans are cell surface and extracellular matrix molecules to which long, unbranched glycosaminoglycan side chains are attached. Heparan sulphate, a type of glycosaminoglycan chain, has been proposed as a co-factor necessary for signalling by a range of growth factors. Here we provide evidence that loss of 2-O-sulphation in heparan sulphate leads to a significant reduction in cell proliferation in the developing cerebral cortex. The gene encoding heparan sulphate 2-sulphotransferase (Hs2st) is expressed in embryonic cortex and histological analysis of mice homozygous for a null mutation in Hs2st indicated a reduction in the thickness of the embryonic cerebral cortex. Using 5′-bromodeoxyuridine (BrdU) incorporation assays we found a reduction of approximately 40% in labelling indices of cortical precursor cells at E12. Comparison of the fates of cortical cells born on E13 and E15 in Hs2st−/− mutant and wildtype littermate embryos revealed no differences in the pattern of cell migration. Our findings suggest a critical role for 2-O-sulphation of heparan sulphate proteoglycan (HSPG) in regulating cell proliferation during development of the cerebral cortex, perhaps through the modulation of cellular responses to growth factor signalling.  相似文献   

12.
Recent evidence suggests that proliferating cells polarize damaged proteins during mitosis to protect one cell from aging, and that the structural conformation of damaged proteins mediates their toxicity. We report that the growth, resistance to stress, and differentiation characteristics of a cancer cell line (PC12) with an inducible Huntingtin (Htt) fused to enhanced green fluorescent protein (GFP) are dependent on the conformation of Htt. Cell progeny containing inclusion bodies have a longer cell cycle and increased resistance to stress than those with diffuse Htt. Using live imaging, we demonstrate that asymmetric division resulting from a cell containing a single inclusion body produces sister cells with different fates. The cell that receives the inclusion body has decreased proliferation and increased differentiation compared with its sister cell without Htt. This is the first report that reveals a functional consequence of the asymmetric division of damaged proteins in mammalian cells, and we suggest that this is a result of inclusion body-induced proteasome impairment.  相似文献   

13.
Quantitative evaluation of T cell responses of patients receiving antitumoral vaccination with a protein is difficult because of the large number of possible HLA-peptide combinations that could be targeted by the response. To evaluate the responses of patients vaccinated with protein MAGE-3, we have developed an approach that involves overnight stimulation of blood T cells with autologous dendritic cells loaded with the protein, sorting by flow cytometry of the T cells that produce IFN-gamma, cloning of these cells, and evaluation of the number of T cell clones that secrete IFN-gamma upon stimulation with the Ag. An important criterion is that T cell clones must recognize not only stimulator cells loaded with the protein, but also stimulator cells transduced with the MAGE-3 gene, so as to exclude the T cells that recognize contaminants generated by the protein production system. Using this approach it is possible to measure T cell frequencies as low as 10(-6). We analyzed the frequencies of anti-vaccine CD4 T cells in five metastatic melanoma patients who had been injected with a MAGE-3 protein without adjuvant and showed evidence of tumor regression. Anti-MAGE-3 CD4 T cells were detected in one of the five patients. The frequency of the anti-MAGE-3 CD4 T cells was estimated at 1/60,000 of the CD4 T cells in postvaccination blood samples, representing at least an 80-fold increase in the frequency found before immunization. The frequencies of one anti-MAGE-3 CD4 T cell clonotype were confirmed by PCR analysis on blood lymphocytes. The 13 anti-MAGE-3 clones, which corresponded to five different TCR clonotypes, recognized the same peptide presented by HLA-DR1.  相似文献   

14.
15.
Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2′-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.  相似文献   

16.
Cell division cycle of cultured neural precursor cells from Drosophila   总被引:1,自引:0,他引:1  
In Drosophila neuroblast cells, which give rise to the embryonic nervous system, undergo a limited number of asymmetric cell divisions. These cell lineages result in the formation of clusters of neurons when neuroblasts are isolated and cultured. A significant proportion of these neural cell clusters (NCC) arise from individual precursor cells. The formation of NCC containing more than two neurons is repressed when DNA synthesis is inhibited. Cell division during NCC development was examined by [3H]thymidine autoradiography. The pattern of DNA synthesis by neural cells was that expected based on observations in situ. The pattern in individual NCC was consistent with single precursor origins for more than 80% of NCC, under our conditions of culture. Based on this, we show that the largest neural precursors at gastrulation undergo the most cell divisions in culture. The neuroblast cell division cycle averages approximately 1.5 hr, and is similar to that of blastoderm cells.  相似文献   

17.
BACKGROUND: T-cells expressing the HSV1-TK suicide gene can be used for the control of graft-versus-host disease following allogeneic stem cell transplantation. To develop clinical trials based on such a strategy, we have generated under good manufacturing procedures a novel 'split genome' human packaging cell line (1704 cells). METHODS: To minimize the risk of generating replication-competent retroviruses, pol was truncated to remove sequences overlapping with env. To improve retroviral infection and selection of transduced T-cells, high titers of GALV-pseudotyped retroviral particles harboring a bicistronic Thy1-IRES-TK vector coding for the CD90 GPI-anchored membrane molecule were produced by 1704 cells. RESULTS: Using 1704 cell supernatant and an optimized transduction protocol, approximately 50% of primary T-cells were transduced and could then be purified (approximately 95%) using clinical-grade immunomagnetic beads directed against CD90. Over 96% of these OKT3/IL-2-activated CD90(+)-selected T-cells were killed by ganciclovir. Cell proliferation and cytokine production of transduced T-cells and HLA-restricted cytotoxicity of transduced T-cell clones were identical to those of their non-transduced counterparts cultured under the same conditions. CONCLUSIONS: GALV-pseudotyped retroviral particles harboring a bicistronic Thy1-IRES-TK vector allow efficient transduction and rapid selection of human T-cells under conditions applicable for clinical trials using the new human 1704 packaging cell line.  相似文献   

18.
In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.  相似文献   

19.
Decraene C  Brugg B  Ruberg M  Eveno E  Matingou C  Tahi F  Mariani J  Auffray C  Pietu G 《Genome biology》2002,3(8):research0042.1-research004222

Background

Ceramide is important in many cell responses, such as proliferation, differentiation, growth arrest and apoptosis. Elevated ceramide levels have been shown to induce apoptosis in primary neuronal cultures and neuronally differentiated PC 12 cells.

Results

To investigate gene expression during ceramide-dependent apoptosis, we carried out a global study of gene expression in neuronally differentiated PC 12 cells treated with C2-ceramide using an array of 9,120 cDNA clones. Although the criteria adopted for differential hybridization were stringent, modulation of expression of 239 genes was identified during the effector phase of C2-ceramide-induced cell death. We have made an attempt at classifying these genes on the basis of their putative functions, first with respect to known effects of ceramide or ceramide-mediated transduction systems, and then with respect to regulation of cell growth and apoptosis.

Conclusions

Our cell-culture model has enabled us to establish a profile of gene expression during the effector phase of ceramide-mediated cell death. Of the 239 genes that met the criteria for differential hybridization, 10 correspond to genes previously involved in C2-ceramide or TNF-α signaling pathways and 20 in neuronal disorders, oncogenesis or more broadly in the regulation of proliferation. The remaining 209 genes, with or without known functions, constitute a pool of genes potentially implicated in the regulation of neuronal cell death.  相似文献   

20.
B Y Wong  H Chen  S W Chung    P M Wong 《Journal of virology》1994,68(9):5523-5531
Retroviral gene transfer efficiently delivers genes of interest stably into target cells, and expression cDNA cloning has been shown to be highly successful. Considering these two advantages, we now report a method by which one can identify genes stimulating cell growth through functional analysis. The first step requires the construction of a retroviral cDNA expression library and the optimization of transfection of vector DNA into virus packaging cells. The second step involves the cocultivation of target cells with libraries of retrovirus-producing cells, resulting in the amplification of target cells transduced with a gene(s) stimulating cell growth. Under standardized conditions of transfection, we detected an average of 4,000 independent clones per dish, among which expression of a retroviral beta-galactosidase gene at an abundance of 0.2% could be detected. Next, we demonstrated the augmentation of the sensitivity of the assay by retroviral infection and functional analysis. We did this by cocultivating factor-dependent (FD) cells with dishes of GP/E cells transfected with plasmids containing various molar ratios of pN2-IL3 DNA and retroviral library cDNA and by determining the highest dilution of pN2-IL3 which still resulted in the conversion of FD cells to factor independence. The retroviral interleukin-3 gene at an abundance as low as 0.001% could be detected. Indeed, we were able to detect from FD cells the development of factor-independent colonies with different phenotypes after retroviral transfer of cDNAs from an immortalized hemopoietic stem cell line. Thus, the combination of a standardized high-efficiency DNA transfection and retrovirus-mediated gene transfer should facilitate the identification of genes capable of conferring to target FD cells a detectable new function or phenotype. By scaling up the size of the experiment realistically during screening, the assay can detect cDNA at an abundance of lower than 0.0001%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号