首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new scansorial passerine bird, Kischinskinia scandens gen. et sp. nov., from the uppermost Lower Miocene of the Tagay locality (Olkhon Island, Lake Baikal) is described based on a distal tarsometatarsal fragment. This is the first Asian member of the clade Certhioidea. A tibiotarsal fragment is also tentatively assigned to this taxon. Both bones display adaptations for climbing on a vertical surface. The find of a scansorial passerine bird of the clade Certhioidea is evidence of ecological similarity of Early Miocene avifaunas of southern Eastern Siberia and Western Europe, since a representative of Certhioidea showing a similar level of specialization was described from the Lower Miocene (MN3) of Germany. In addition, Kischinskinia scandens is the earliest reliable member of oscine passerines (Oscines) from Asia.  相似文献   

2.
Passerine birds comprise over half of avian diversity, but have proved difficult to classify. Despite a long history of work on this group, no comprehensive hypothesis of passerine family-level relationships was available until recent analyses of DNA-DNA hybridization data. Unfortunately, given the value of such a hypothesis in comparative studies of passerine ecology and behaviour, the DNA-hybridization results have not been well tested using independent data and analytical approaches. Therefore, we analysed nucleotide sequence variation at the nuclear RAG-1 and c-mos genes from 69 passerine taxa, including representatives of most currently recognized families. In contradiction to previous DNA-hybridization studies, our analyses suggest paraphyly of suboscine passerines because the suboscine New Zealand wren Acanthisitta was found to be sister to all other passerines. Additionally, we reconstructed the parvorder Corvida as a basal paraphyletic grade within the oscine passerines. Finally, we found strong evidence that several family-level taxa are misplaced in the hybridization results, including the Alaudidae, Irenidae, and Melanocharitidae. The hypothesis of relationships we present here suggests that the oscine passerines arose on the Australian continental plate while it was isolated by oceanic barriers and that a major northern radiation of oscines (i.e. the parvorder Passerida) originated subsequent to dispersal from the south.  相似文献   

3.
Zoogeographic, palaeontological and biochemical data support a Southern Hemisphere origin for passerine birds, while accumulating molecular data suggest that most extant avian orders originated in the mid-Late Cretaceous. We obtained DNA sequence data from the nuclear c-myc and RAG-1 genes of the major passerine groups and here we demonstrate that the endemic New Zealand wrens (Acanthisittidae) are the sister taxon to all other extant passerines, supporting a Gondwanan origin and early radiation of passerines. We propose that (i) the acanthisittids were isolated when New Zealand separated from Gondwana (ca. 82-85 Myr ago), (ii) suboscines, in turn, were derived from an ancestral lineage that inhabited western Gondwana, and (iii) the ancestors of the oscines (songbirds) were subsequently isolated by the separation of Australia from Antarctica. The later spread of passerines into the Northern Hemisphere reflects the northward migration of these former Gondwanan elements.  相似文献   

4.
The Paleogene (Paleocene-Oligocene) fossil record of birds in Europe is reviewed and recent and fossil taxa are placed into a phylogenetic framework, based on published cladistic analyses. The pre-Oligocene European avifauna is characterized by the complete absence of passeriform birds, which today are the most diverse and abundant avian taxon. Representatives of small non-passeriform perching birds thus probably had similar ecological niches before the Oligocene to those filled by modern passerines. The occurrence of passerines towards the Lower Oligocene appears to have had a major impact on these birds, and the surviving crown-group members of many small arboreal Eocene taxa show highly specialized feeding strategies not found or rare in passeriform birds. It is detailed that no crown-group members of modern 'families' are known from pre-Oligocene deposits of Europe, or anywhere else. The phylogenetic position of Paleogene birds thus indicates that diversification of the crown-groups of modern avian 'families' did not take place before the Oligocene, irrespective of their relative position within Neornithes (crown-group birds). The Paleogene fossil record of birds does not even support crown-group diversification of Galliformes, one of the most basal taxa of neognathous birds, before the Oligocene, and recent molecular studies that dated diversification of galliform crown-group taxa into the Middle Cretaceous are shown to be based on an incorrect interpretation of the fossil taxa used for molecular clock calibrations. Several taxa that occur in the Paleogene of Europe have a very different distribution than their closest extant relatives. The modern survivors of these Paleogene lineages are not evenly distributed over the continents, and especially the great number of taxa that are today restricted to South and Central America is noteworthy. The occurrence of stem-lineage representatives of many taxa that today have a restricted Southern Hemisphere distribution conflicts with recent hypotheses on a Cretaceous vicariant origin of these taxa, which were deduced from the geographical distribution of the basal crown-group members.  相似文献   

5.
Nucleotide sequences from the c-mos proto-oncogene have previously been used to reconstruct the phylogenetic relationships between distantly related vertebrate taxa. To explore c-mos variation at shallower levels of avian divergence, we compared c-mos sequences from representative passerine taxa that span a range of evolutionary differentiation, from basal passerine lineages to closely allied genera. Phylogenetic reconstructions based on these c-mos sequences recovered topologies congruent with previous DNA-DNA hybridization-based reconstructions, with many nodes receiving high support, as indicated by bootstrap and reliability values. One exception was the relationship of Acanthisitta to the remaining passerines, where the c-mos-based searches indicated a three-way polytomy involving the Acanthisitta lineage and the suboscine and oscine passerine clades. We also compared levels of c-mos and mitochondrial differentiation across eight oscine passerine taxa and found that c-mos nucleotide substitutions accumulate at a rate similar to that of transversion substitutions in mitochondrial protein-coding genes. These comparisons suggest that nuclear-encoded loci such as c-mos provide a temporal window of phylogenetic resolution that overlaps the temporal range where mitochondrial protein-coding sequences have their greatest utility and that c-mos substitutions and mtDNA transversions can serve as complementary, informative, and independent phylogenetic markers for the study of avian relationships.  相似文献   

6.
Gerald Mayr 《Geobios》2006,39(6):865
A postcranial skeleton of a small bird from the early Oligocene locality Pichovet in Southern France is described and identified as Eocuculus cf. cherpinae Chandler, 1999. It is the second fossil record of Eocuculus which was hitherto known from a postcranial skeleton from the late Eocene of North America only. Although Eocuculus shares some derived similarities with Cuculidae (cuckoos), it distinctly differs in a number of osteological features from crown group members of this taxon. If future, more complete skeletons prove its cuculiform affinities, Eocuculus is a stem lineage representative of this taxon and not within the crown group. Recognition of Eocuculus in the early Oligocene of France provides evidence for the presence of an extinct late Eocene/early Oligocene avian taxon with an intercontinental Northern Hemisphere distribution.  相似文献   

7.
How environmental conditions affect the timing and extent of parental care is a fundamental question in comparative studies of life histories. The post‐fledging period is deemed critical for offspring fitness, yet few studies have examined this period, particularly in tropical birds. Tropical birds are predicted to have extended parental care during the post‐fledging period and this period may be key to understanding geographic variation in avian reproductive strategies. We studied a neotropical passerine, the western slaty‐antshrike Thamnophilus atrinucha, and predicted greater care and higher survival during the post‐fledging period compared to earlier stages. Furthermore, we predicted that duration of post‐fledging parental care and survival would be at the upper end of the distribution for Northern Hemisphere passerines. Correspondingly, we observed that provisioning continued for 6–12 weeks after fledging. In addition, provisioning rate was greater after fledging and offspring survival from fledging to independence was 75%, greater than all estimates from north‐temperate passerines. Intervals between nesting attempts were longer when the first brood produced successful fledglings compared to nests where offspring died either in the nest or upon fledging. Parents delayed initiating second nests after the first successful brood until fledglings were near independence. Our results indicate that parents provide greater care after fledging and this extended care likely increased offspring survival. Moreover, our findings of extended post‐fledging parental care and higher post‐fledging survival compared to Northern Hemisphere species have implications for understanding latitudinal variation in reproductive effort and parental investment strategies.  相似文献   

8.
Cedrelospermum Saporta is an extinct genus in the Ulmaceae with abundant fossil records in North America and Europe. However, so far, fossil records of this genus from Asia are sparse, which limits the interpretations of the morphological evolution and biogeographical history of the genus. Here we report well‐preserved fruits (Cedrelospermum tibeticum sp. nov.) and a leaf (Cedrelospermum sp.) of Cedrelospermum from the upper Oligocene Lunpola and Nyima basins in the Qinghai–Tibetan Plateau (QTP). This is the first fossil record of Cedrelospermum in the QTP, showing that this genus grew in this region during the late Oligocene. Cedrelospermum tibeticum fruits are double‐winged, morphologically similar to the Eocene and Oligocene double‐winged Cedrelospermum species from North America. This supports the hypothesis that Cedrelospermum migrated to Asia from North America by way of the Bering Land Bridge. Given that Cedrelospermum was a typical element of Northern Hemispheric flora in the Paleogene and Neogene, the presence of this genus indicates that the central region of the QTP was phytogeographically linked with other parts of the Northern Hemisphere during the late Oligocene. The morphological observations of C. tibeticum fruits and other double‐winged Cedrelospermum fruits suggest an evolutionary trend from obtuse to acute apex for the primary wing. Cedrelospermum tibeticum likely had warm and wet climatic requirements. This type of an environment possibly existed in the central QTP in the late Oligocene, thereby supporting the survival of C. tibeticum.  相似文献   

9.
Evolution, biogeography, and patterns of diversification in passerine birds   总被引:6,自引:0,他引:6  
This paper summarizes and discusses the many new insights into passerine evolution gained from an increased general interest in avian evolution among biologists, and particularly from the extensive use of DNA sequence data in phylogenetic reconstruction. The sister group relationship between the New Zealand rifleman and all other passerines, indicates the importance of the former southern supercontinent Gondwana in the earliest evolution of this group. Following the break-up of Gondwana, the ancestors of other major passerine groups became isolated in Australia (oscines), South America (New World suboscines), and possibly, the then connected Kerguelen Plateau/India/Madagascar tectonic plates (Old World suboscines). The oscines underwent a significant radiation in the Australo-Papuan region and only a few oscine lineages have spread further than to the nearby Southeast Asia. A remarkable exception is the ancestor to the vast Passerida radiation, which now comprises 35% of all bird species. This group obviously benefitted greatly from the increased diversity in plant seed size and morphology during the Tertiary. The lyrebirds (and possibly scrub-birds) constitute the sister group to all other oscines, which renders "Corvida" ( sensu Sibley and Ahlquist 1990) paraphyletic. Sequence data suggests that Passerida, the other clade of oscines postulated based on the results of DNA–DNA hybridizations, is monophyletic, and that the rockfowl and rock-jumpers are the most basal members of this clade. The suboscines in the Old World (Eurylamides) and the New World (Tyrannides), respectively, are sister groups. A provisional, working classification of the passerines is presented based on the increased understanding of the major patterns of passerine evolution.  相似文献   

10.
This paper documents the phylogenetic utility of ZENK at the avian intra-ordinal level using hummingbirds, swifts, and passerines as case studies. ZENK sequences (1.7 kb) were used to reconstruct separate gene trees containing the major lineages of each group, and the three trees were examined for congruence with existing DNA-DNA hybridization trees. The results indicate both that ZENK is an appropriate nuclear marker for resolving relationships deep in the avian tree, and that many relationships within these three particular groups are congruent among the different datasets. Specifically, within hummingbirds there was topological agreement that the major hummingbird lineages diverged in a graded manner from the "hermits," to the "mangoes," to the "coquettes," to the "emeralds," and finally to a sister relationship between the "mountain-gems" and the "bees." Concerning swifts, the deepest divergences were congruent: treeswifts (Hemiprocnidae) were sister to the typical swifts (Apodidae), and the subfamily Apodinae was monophyletic relative to Cypseloidinae. Within Apodinae, however, were short, unresolved branches among the swiftlets, spinetails, and more typical swifts; a finding which coincides with other datasets. Within passerine birds, there was congruent support for monophyly of sub-oscines and oscines, and within sub-oscines, for monophyly of New World groups relative to the Old World lineages. New World sub-oscines split into superfamilies Furnaroidea and Tyrannoidea, with the Tyrannoid relationships completely congruent among ZENK and DNA-DNA hybridization trees. Within Furnaroidea, however, there was some incongruence regarding the positions of Thamnophilidae and Formicariidae. Concerning oscine passerines, both datasets showed a split between Corvida and Passerida and confirmed the traditional membership of passerid superfamilies Muscicapoidea and Passeroidea. Monophyly of Sylvioidea, however, remained uncertain, as did the relationships among the superfamiles themselves. These results are strikingly similar to other recent findings and indicative of continuing uncertainty about the higher level relationships of oscine passerines.  相似文献   

11.
Austrovideira dettmannaegen. & sp. nov. from the early Oligocene Capella Flora in central Queensland is the first fossil Vitaceae wood described from the Southern Hemisphere. A new combination, Stafylioxylon ramunculiformis (Poole & Wilkinson) Pace & Rozefelds for a Northern Hemisphere fossil wood is also proposed. Austrovideira and Stafylioxylon share with Vitaceoxylon secondary xylem with two diameter classes of vessels, wide vessels usually solitary, narrow vessels forming radial chains, very wide and tall rays, scanty paratracheal parenchyma and septate fibres. Austrovideira differs from Vitaceoxylon in having scalariform intervessel pits and homocellular rays composed exclusively of procumbent cells. This combination of features is seen in the Ampelocissus‐Vitis clade, and a clearly stratified phloem with fibre bands alternating with all other axial elements and phloem rays rapidly dilating towards the periderm is restricted to Parthenocissus and Vitis. Stafylioxylon shares with Austrovideira the presence of scalariform intervessel pits but it differs from that genus in both ray composition and bark anatomy, as it lacks a stratified phloem. These fossil wood genera demonstrate that the lianescent habit in the Vitaceae was established by the Eocene in the Northern Hemisphere and by the Oligocene in the Southern Hemisphere. The pollen and seed fossil record shows that the Vitaceae were in Australia by the Eocene and fossil seeds suggest that the family had radiated by this time. The Oligocene Capella flora with two seed taxa and fossil wood (Austrovideira) provides further evidence of an Australian radiation. The fossil evidence, suggests a significant Gondwanic history for the family.  相似文献   

12.
In cooperatively breeding birds, adults often forego reproduction and help care for the offspring of others. A universal explanation for this mode of breeding has eluded evolutionary biologists, who have considered it to be a rare, and largely Australian, phenomenon. In a recent paper, Andrew Cockburn reports that the number of known cooperative breeders among oscine passerine birds has more than doubled since the last substantial review, published 16 years ago. Cooperative breeding is often the ancestral trait, and predominantly cooperative genera are species poor compared with their pair-breeding counterparts. Cockburn argues that speciation is less likely in cooperative clades, because the philopatric tendencies of individuals make them poor dispersers, colonizers and migrants. This new hypothesis helps explain the distribution and composition of migrant and island avifauna. However, a major challenge remains to reconcile the roles of phylogenetic history and current ecology in promoting cooperative behaviour.  相似文献   

13.
The superb fairy‐wren, Malurus cyaneus, is one of the most iconic Australian passerine species. This species belongs to an endemic Australasian clade, Meliphagides, which diversified early in the evolution of the oscine passerines. Today, the oscine passerines comprise almost half of all avian species diversity. Despite the rapid increase of available bird genome assemblies, this part of the avian tree has not yet been represented by a high‐quality reference. To rectify that, we present the first high‐quality genome assembly of a Meliphagides representative: the superb fairy‐wren. We combined Illumina shotgun and mate‐pair sequences, PacBio long‐reads, and a genetic linkage map from an intensively sampled pedigree of a wild population to generate this genome assembly. Of the final assembled 1.07‐Gb genome, 975 Mb (90.4%) was anchored onto 25 pseudochromosomes resulting in a final superscaffold N50 of 68.11 Mb. This high‐quality bird genome assembly is one of only a handful which is also accompanied by a genetic map and recombination landscape. In comparison to other pedigree‐based bird genetic maps, we find that the fairy‐wren genetic map more closely resembles those of Taeniopygia guttata and Parus major maps, unlike the Ficedula albicollis map which more closely resembles that of Gallus gallus. Lastly, we also provide a predictive gene and repeat annotation of the genome assembly. This new high‐quality, annotated genome assembly will be an invaluable resource not only regarding the superb fairy‐wren species and relatives but also broadly across the avian tree by providing a novel reference point for comparative genomic analyses.  相似文献   

14.
Seeds of Sargentodoxa (Sargentodoxaceae), a deciduous vine presently restricted to southeastern Asia, are described from the Oligocene Brandon Lignite of Vermont. This is the first report of fossil Sargentodoxaceae. The Sargentodoxaceae are segregated from the Lardizabalaceae, a small family with an unusual modem distribution (six genera in East Asia, two genera in Chile). Given the close relationship of the two families, the discovery of Sargentodoxa in North America, along with one and possibly two other occurrences of Lardizabalaceae in the Northern Hemisphere, raises the possibility that the Lardizabalaceae achieved their present distribution by 1) spreading around the Northern Hemisphere in the early Tertiary as part of the “Boreotropical Flora,” followed by 2) long-distance dispersal from north to south in the New World. Other factors argue against this interpretation.  相似文献   

15.
Ian Abbott 《Oecologia》1978,33(2):221-233
Summary New evidence from the passerine faunas of islands off Southwestern Australia agrees with the hypothesis that the passerine faunas of Australian and New Zealand islands are impoverished because most passerine species are poor colonizers. Dispersal of landbirds onto Carnac Island near Perth was infrequent, and many of those species that arrived were represented by single birds. Comparison of similarly structured island and mainland habitats showed that island habitats still have fewer passerine bird species than mainland habitats. Island bird faunas are more stable over short periods of time than over long periods; this is contrary to island avifaunas in the Northern Hemisphere.The following features typify the avifaunas of Australian islands: immigration of species of land birds occurs infrequently; (natural) extinction is rare; and the degree of saturation of the avifaunas is low. Without more direct evidence, competitive interactions should not be invoked to account for the species poverty of these insular avifaunas.  相似文献   

16.
Evolutionary relationships of the scrub-birds Atrichornis were investigated using complete sequences of the recombination-activating gene RAG-1 and the proto-oncogene c-mos for two individuals of the noisy scrub-bird Atrichornis clamosus. Phylogenetic analysis revealed that Atrichornis was sister to the genus Menura (the lyrebirds) and that these two genera (the Menurae) were sister to the rest of the oscine passerines. A sister relationship between Atrichornis and Menura supports the traditional view, based on morphology and DNA hybridization, that these taxa are closely related. Similarly, a sister relationship with the remaining oscine passerines agrees with the morphological distinctiveness of Atrichornis and Menura, although this result contradicts conclusions based on DNA hybridization studies. Although Atrichornis is very well known morphologically, previous conclusions regarding its relationships were hampered by a lack of comparative knowledge of other passerines, making concurrence of the sequence data of particular significance.  相似文献   

17.
The impact of forest management on diurnal bird assemblages and abundance was investigated in contiguous tracts of eucalypt forest in the Brigalow Belt Bioregion, south central Queensland. Sites were located across three levels of livestock grazing intensity and three levels of selective logging intensity within the most extensive habitat type, Corymbia citriodora‐dominant forest. We recorded a high rate of incidence and large numbers of the hyper‐aggressive noisy miner Manorina melanocephala (Passeriformes: Meliphagidae) at the majority of our survey sites, a phenomenon rarely reported in non‐cleared landscapes. As shown by numerous studies in fragmented landscapes, the distribution of this species in our study had a substantial negative effect upon the distribution of small passerine species. Noisy miners exerted the strongest influence upon small passerine abundance, and masked any forest management effects. However, key habitat features important for small passerines were identified, including a relatively high density of large trees and stems in the midstorey. Selective logging appeared to exert a minimal effect upon noisy miner abundance, whereas grazing intensity had a profound, positive influence. Noisy miners were most abundant in intensively grazed forest with minimal midstorey and a low volume of coarse woody debris. Higher road density in the forest landscape also corresponded with increased numbers of noisy miners. Reduction in grazing pressure in Brigalow Belt forests has the potential to benefit small passerine assemblages across large areas through moderating noisy miner abundance. The strong relationship between noisy miners and small passerines suggests that noisy miner abundance could act as an easily measured indicator of forest condition, potentially contributing to monitoring of forest management outcomes.  相似文献   

18.
<正> Today only a single species of the aplodontid rodents still survives in the humid region of western North America, but in the Oligocene time the family was widespread over the Northern Hemisphere. Fossils of the Oligocene aplodontids so far have been mainly found in North America and Europe. Their occurrence in Asia is scarce. Only a few examples are known from Kazakhstan, USSR, and Mongolia. No record was known in China until 1977, when some fossil aplodontids were collected from the Middle Oligocene in Nei Mongol.  相似文献   

19.
The spermatozoon of Apus apus is typical of non‐passerines in many respects. Features shared with palaeognaths and the Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around an elongate distal centriole; and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. The perforatorium and endonuclear canal are lost in A. apus as in some other non‐passerines. All non‐passerines differ from palaeognaths in that the latter have a transversely ribbed fibrous sheath whereas in non‐passerines it is amorphous, as in Apus, or absent. The absence of an annulus is an apomorphic but homoplastic feature of swift, psittaciform, gruiform and passerine spermatozoa. The long distal centriole, penetrating the entire midpiece, is a remarkably plesiomorphic feature of the swift spermatozoa, known elsewhere only in palaeognaths. The long centriole of Apus, if not a reversal, would be inconsistent with the former placement of the Apodiformes above the Psittaciformes from DNA–DNA hybridization. In contrast to passerines, in A. apus the microtubules in the spermatid are restricted to a transient single row encircling the cell. The form of the spermatozoon fully justifies the exclusion of swifts from the passerine family Hirundinidae.  相似文献   

20.
Aim  Several independent studies suggest that oscine passerine birds originated in Eastern Gondwana/Australia and from there spread to Southeast Asia and then to Africa. A recently constructed supertree including 1724 oscine taxa forms the basis for this study, in which we present a more detailed hypothesis of this out-of-Australia scenario.
Location  Australia, Africa, Southeast Asia, western Pacific, Indian Ocean.
Methods  We used the computer program DIVA to identify putative ancestral areas for each node. We also applied a molecular clock calibrated with three recently conducted studies of passerines to estimate the ages of basal nodes. Although these time estimates are rough they give some indication that, together with the putative ancestral areas, they can be compared with known events of plate tectonic movements in the Australian, Southeast Asian and western Pacific regions.
Results  The DIVA analysis shows that Basal Corvida and Crown Corvida originated in Australia. Ancestral nodes for Picathartes / Chaetops and Passerida originated in Africa, and the basal nodes of Sylvioidea also originated in Africa. For Muscicapoidea and Passeroidea we were unable to establish ancestral patterns. The molecular clock showed that Crown Corvida radiated between 20 and 30 Ma whereas Basal Corvida and the Passerida clade radiated from c . 45 to 50 Ma.
Main conclusions  Both approaches agree that: (1) Crown Corvida spread from Australia to Southeast Asia, with several dispersal events around the time when the terranes of Australian and Indomalayan origin came close together some 15 Ma, and (2) a single dispersal event went from Australia across the Indian Ocean to Africa c . 45–50 Ma, leading to the very large radiation of the parvorder Passerida. The latter hypothesis is novel, and contrary to the general view that oscines spread exclusively via Southeast Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号