首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
At the layer of first visual synapses, information from photoreceptors is processed and transmitted towards the brain. In fly compound eye, output from photoreceptors (R1-R6) that share the same visual field is pooled and transmitted via histaminergic synapses to two classes of interneuron, large monopolar cells (LMCs) and amacrine cells (ACs). The interneurons also feed back to photoreceptor terminals via numerous ligand-gated synapses, yet the significance of these connections has remained a mystery. We investigated the role of feedback synapses by comparing intracellular responses of photoreceptors and LMCs in wild-type Drosophila and in synaptic mutants, to light and current pulses and to naturalistic light stimuli. The recordings were further subjected to rigorous statistical and information-theoretical analysis. We show that the feedback synapses form a negative feedback loop that controls the speed and amplitude of photoreceptor responses and hence the quality of the transmitted signals. These results highlight the benefits of feedback synapses for neural information processing, and suggest that similar coding strategies could be used in other nervous systems.  相似文献   

2.
Synaptic transmission from second- to third-order neurons of cockroach ocelli occurs in an exponentially rising part of the overall sigmoidal characteristic curve relating pre- and postsynaptic voltage. Because of the nonlinear nature of the synapse, linear responses of second-order neurons to changes in ligh intensity are half-wave rectified, i.e., the response to a decrement in light is amplified whereas that to an increment in light is compressed. Here I report that the gain of synaptic transmission from second- to third-order neurons changes by ambient light levels and by wind stimulation applied to the cerci. Transfer characteristics of the synapse were studied by simultaneous intracellular recordings of second- and third-order neurons. Potential changes were evoked in second-order neurons by a sinusoidally modulated light with various mean luminances. With a decrease in the mean luminance (a) the mean membrane potential of second-order neurons was depolarized, (b) the synapse between the second- and third-order neurons operated in a steeper range of the exponential characteristic curve, where the gain to transmit modulatory signals was higher, and (c) the gain of third-order neurons to detect a decrement in light increased. Second-order neurons were depolarized when a wind or tactile stimulus was applied to various parts of the body including the cerci. During a wind-evoked depolarization, the synapse operated in a steeper range of the characteristic curve, which resulted in an increased gain of third-order neurons to detect light decrements. I conclude that the nonlinear nature of the synapse between the second- and third-order neurons provides an opportunity for an adjustment of gain to transmit signals of intensity change. The possibility that a similar gain control occurs in other visual systems and underlies a more advanced visual function, i.e., detection of motion, is discussed.  相似文献   

3.
A dynamic model is proposed for the retinal cells, in particular bipolar and amacrine cells, in the vertebrate retina. On the basis of the relation between responses of retinal cells and their accompanying membrane resistance changes, the functional structure of the synaptic transmission of signals between retinal cells is incorporated into the model. Some simulated retinal cell responses are similar to experimental results in the vertebrate retina. The model may provide some means to study the mechanisms underlying the synaptic transmission between retinal cells.  相似文献   

4.
Neurons exploit both membrane biophysics and biochemical pathways of the cytoplasm for dendritic integration of synaptic input. Here we quantify the tuning discrepancy of electrical and chemical response properties in two kinds of neurons using in vivo visual stimulation. Dendritic calcium concentration changes and membrane potential of visual interneurons of the fly were measured in response to visual motion stimuli. Two classes of tangential cells of the lobula plate were compared, HS-cells and CH-cells. Both neuronal classes are known to receive retinotopic input with similar properties, yet they differ in morphology, physiology, and computational context. Velocity tuning and directional selectivity of the electrical and calcium responses were investigated. In both cell classes, motion-induced calcium accumulation did not follow the early transient of the membrane potential. Rather, the amplitude of the calcium signal seemed to be related to the late component of the depolarization, where it was close to a steady state. Electrical and calcium responses differed with respect to their velocity tuning in CH-cells, but not in HS-cells. Furthermore, velocity tuning of the calcium response, but not of the electrical response differed between neuronal classes. While null-direction motion caused hyperpolarization in both classes, this led to a calcium decrement in CH-cells, but had no effect on the calcium signal in HS-cells, not even when calcium levels had been raised by a preceding excitatory motion stimulus. Finally, the voltage-[Ca2+]i-relationship for motion-induced, transient potential changes was steeper and less rectifying in CH-cells than in HS-cells. These results represent an example of dendritic information processing in vivo, where two neuronal classes respond to identical stimuli with a similar electrical response, but differing calcium response. This highlights the capacity of neurons to segregate two response components.  相似文献   

5.
The computational background for analysing the passive, subthreshold properties of fine-scale ramifications such as "en-passant" and "terminal ladder" type chains of boutons and spiny dendrites is presented. The segment-by-segment approximation of a cable composed of serial or parallel chains of identical units (modules) is based on the cable representations of boutons, axon, spines and dendrit. Pulse response in the time domain is evaluated from the narrow-bandwidth, recursive estimation of the input and transfer impedances by means of inverse Laplace transformation. The shape of the voltage transients in semi-infinite chain of cable units is found by the input impedance computed under the equilibrium condition. The model predicts differences of subthreshold responses in relation to a change in modular geometry or membrane electrical parameters. The results may help in finding the relationship between the physical and electrotonical geometries of nerve cells with non-smooth processes. The smoothing procedure gives a possibility for the functional unification and simplification of those fine-scale processes of nerve cells where the characteristic space constants are much greater than the intersynaptic distances.  相似文献   

6.
A study of activity recorded with intracellular micropipettes was undertaken in the caudal abdominal ganglion of the crayfish in order to gain information about central fiber to fiber synaptic mechanisms. This synaptic system has well developed integrative properties. Excitatory post-synaptic potentials can be graded, and synaptic potentials from different inputs can sum to initiate spike discharge. In most impaled units, the spike discharge fails to destroy the synaptic potential, thereby allowing sustained depolarization and multiple spike discharge following single pulse stimulation to an afferent input. Some units had characteristics which suggest a graded threshold for spike generation along the post-synaptic fiber membrane. Other impaled units responded to afferent stimulation with spike discharges of two distinct amplitudes. The smaller or "abortive" spikes in such units may represent non-invading activity in branches of the post-synaptic axon. On a few occasions one afferent input was shown to inhibit the spike discharge initiated by another presynaptic input.  相似文献   

7.
For many years, membrane potential (Vm) and input resistance have been used to characterize the electrophysiological nature of a seal (barrier) that forms at the cut end of a transected axon or other extended cytoplasmic structure. Data from a mathematical and an analog model of a transected axon and other theoretical considerations show that steady-state values of Vm and input resistance measured from any cable-like structure provide a very equivocal assessment of the electrical barrier (seal) at the cut end. Extracellular assessments of injury currents almost certainly provide a better electrophysiological measure of the status of plasma membrane sealing because measurements of these currents do not depend on the cable properties of extended cytoplasmic processes after transection.  相似文献   

8.
The visual cortex responds to repeated presentations of the same stimulus with high variability. Because the firing mechanism is remarkably noiseless, the source of this variability is thought to lie in the membrane potential fluctuations that result from summated synaptic input. Here this hypothesis is tested through measurements of membrane potential during visual stimulation. Surprisingly, trial-to-trial variability of membrane potential is found to be low. The ratio of variance to mean is much lower for membrane potential than for firing rate. The high variability of firing rate is explained by the threshold present in the function that converts inputs into firing rates. Given an input with small, constant noise, this function produces a firing rate with a large variance that grows with the mean. This model is validated on responses recorded both intracellularly and extracellularly. In neurons of visual cortex, thus, a simple deterministic mechanism amplifies the low variability of summated synaptic inputs into the large variability of firing rate. The computational advantages provided by this amplification are not known.  相似文献   

9.
Steady-state potential and current distributions resulting from internal injection of current in the squid giant axon have been measured experimentally and also computed from nonlinear membrane cable equation models by numerical methods, using the Hodgkin-Huxley equations to give the membrane current density. The solutions obtained by this method satisfactorily reproduce experimental measurements of the steady-state distribution of membrane potential. Computations of the input current-voltage characteristic for a nonlinear cable were in excellent agreement with measurements on axons. Our results demonstrate the power of Cole's equation to extract the nonlinear membrane characteristics simply from measurement of the input resistance.  相似文献   

10.
Endocytosis at ribbon synapses   总被引:1,自引:0,他引:1  
Unlike conventional synaptic terminals that release neurotransmitter episodically in response to action potentials, neurons of the visual, auditory and vestibular systems encode sensory information in graded signals that are transmitted at their synapses by modulating the rate of continuous release. The synaptic ribbon, a specialized structure found at the active zones of these neurons, is necessary to sustain the high rates of exocytosis required for continuous release. To maintain the fidelity of synaptic transmission, exocytosis must be balanced by high-capacity endocytosis, to retrieve excess membrane inserted during vesicle fusion. Capacitance measurements following vesicle release in ribbon-type neurons indicate two kinetically distinct phases of compensatory endocytosis, whose relative contributions vary with stimulus intensity. The two phases can be independently regulated and may reflect different underlying mechanisms operating on separate pools of recycling vesicles. Electron microscopy shows diversity among ribbon-type synapses in the relative importance of clathrin-mediated endocytosis versus bulk membrane retrieval as mechanisms of compensatory endocytosis. Ribbon synapses, like conventional synapses, make use of multiple endocytosis pathways to replenish synaptic vesicle pools, depending on the physiological needs of the particular cell type.  相似文献   

11.
12.
Lengthy uninterrupted series of sections of the neural plexus in the compound eye of the horseshoe crab, Limulus polyphemus, have been used to reconstruct all the arborizations and their synaptic interconnections in a neuropil knot. This one microglomerulus contains the axons of 19 retinular cells, which pass by without contacts; 13 efferent fibres with 44 synapses to and from eccentric cell collaterals; and arborizations from 54 eccentric cells with 577 synapses. Eccentric cell axons are devoid of synaptic input. Their collaterals ramify in synaptic knots and subserve both pre- and postsynaptic functions simultaneously. Arborizations near the axon of origin have a highly branched pattern (up to 20 bifurcations), a high synaptic input: output ratio (up to about 9:1), and high synaptic density (a maximum of 12 per micrometre of neurite length). The opposite extreme is represented by sparsely branched eccentric cell collaterals distant from their axons of origin with very little synaptic input and sparse output. Spatially graded lateral inhibition is the apparent outcome of a radially decreasing distribution of inhibitory synapses on the arborizations of eccentric cell collaterals combined with possible decremental signal transmission in the plexus. The synaptic analysis has a bearing on most physiological aspects of lateral inhibition that have been studied in the Limulus eye. Implied in the results is the suggestion that synapse formation is an intrinsic property of the presynaptic element, but that the connectivity is governed by the electrical activity of target neurons.  相似文献   

13.
Transfer characteristics of the synapse made from second- to third-order neurons of cockroach ocelli were studied using simultaneous microelectrode penetrations and the application of tetrodotoxin. Potential changes were evoked in second-order neurons by either an extrinsic current or a sinusoidally modulated light. The synapse had a low-pass filter characteristic with a cutoff frequency of 25-30 Hz, which passed most presynaptic signals. The synapse operated at an exponentially rising part of the overall sigmoidal input/output curve relating pre- and postsynaptic voltages. Although the response of the second-order neuron to sinusoidal light was essentially linear, the response of the third-order neuron contained an accelerating nonlinearity: the response amplitude was a positively accelerated function of the stimulus contrast, reflecting nonlinear synaptic transmission. The response of the third-order neuron exhibited a half-wave rectification: the depolarizing response to light decrement was much larger than the hyperpolarizing response to light increment. Nonlinear synaptic transmission also enhanced the transient response to step-like intensity changes. I conclude that (a) the major function of synaptic transmission between second- and third-order neurons of cockroach ocelli is to convert linear presynaptic signals into nonlinear ones and that (b) signal transmission at the synapse between second- and third-order neurons of cockroach ocelli fundamentally differs from that at the synapse between photoreceptors and second-order neurons of visual systems so far studied, where the synapse operates in the midregion of the characteristic curve and the transmission is essentially linear.  相似文献   

14.
Summary Intracellular responses to illumination have been recorded separately from the retinula cells and from their axons in the compound eyes of the giant water bug Lethocerus. The basic response in both places consists of an initial transient depolarisation followed by a plateau (Fig. 2). No action potentials were seen in either axons or retinula cells.The responses are graded according to the intensity of the stimulus, to its position within the visual field of the cells and to the plane of polarization of the light (Figs. 3, 4). The angle of acceptance (dark-adapted eyes) measured in either retinula cells or axons is 9°. Similarly, the average value of the sensitivity ratio to light polarised at orthogonal planes is 31 in both places.Experiments designed to reveal a presumed spike initiation region of the cells by reducing damage to the eye failed to reveal impulses. It is concluded that the receptor potential spreads electrotonically in the axon to the first synaptic region which lies up to 2 mm away. The values of membrane constants which would be required for conduction without severe decrement over such a distance are within the range measured in other systems.  相似文献   

15.
The role of the axonal membrane compartment in synaptic integration is usually neglected. We show here that in interneurons of the cerebellar molecular layer, where dendrites are so short that the somatodendritic domain can be considered isopotential, the axonal membrane contributes a significant part of the cell input capacitance. We examine the impact of axonal membrane on synaptic integration by cutting the axon with two-photon illumination. We find that the axonal compartment acts as a sink for signals generated at fast conductance synapses, thus increasing the initial decay rate of corresponding synaptic potentials over the value predicted from the resistance-capacitance (RC) product of the cell membrane; signals generated at slower synapses are much less affected. This mechanism sharpens the spike firing precision of fast glutamatergic inputs without resorting to multisynaptic pathways.  相似文献   

16.
Large, second-order neurons of locust ocelli, or L-neurons, make some output connections that transmit small changes in membrane potential and can sustain transmission tonically. The synaptic connections are made from the axons of L-neurons in the lateral ocellar tracts, and are characterized by bar-shaped presynaptic densities and densely packed clouds of vesicles near to the cell membrane. A cloud of vesicles can extend much of the length of this synaptic zone, and there is no border between the vesicles that are associated with neighboring presynaptic densities. In some axons, presynaptic densities are associated with discrete small clusters of vesicles. Up to 6% of the volume of a length of axon in a synaptic zone can be occupied with a vesicle cloud, packed with 4.5 to 5.5 thousand vesicles per microm(3). Presynaptic densities vary in length, from less than 70 nm to 1.5 microm, with shorter presynaptic densities being most frequent. The distribution of vesicles around short presynaptic densities was indistinguishable from that around long presynaptic densities, and vesicles were distributed in a similar way right along the length of a presynaptic density. Within the cytoplasm, vesicles are homogeneously distributed within a cloud. We found no differences in the distribution of vesicles in clouds between locusts that had been dark-adapted and locusts that had been light-adapted before fixation.  相似文献   

17.
Cable theory in neurons with active,linearized membranes   总被引:4,自引:0,他引:4  
This investigation aims at exploring some of the functional consequences of single neurons containing active, voltage dependent channels for information processing. Assuming that the voltage change in the dendritic tree of these neurons does not exceed a few millivolts, it is possible to linearize the non-linear channel conductance. The membrane can then be described in terms of resistances, capacitances and inductances, as for instance in the small-signal analysis of the squid giant axon. Depending on the channel kinetics and the associated ionic battery the linearization yields two basic types of membrane: a membrane modeled by a collection of resistances and capacitances and membranes containing in addition to these components inductances. Under certain specified conditions the latter type of membrane gives rise to a membrane impedance that displays a prominent maximum at some nonzero resonant frequency f max. We call this type of membrane quasi-active, setting it apart from the usual passive membrane. We study the linearized behaviour of active channels giving rise to quasi-active membranes in extended neuronal structures and consider several instances where such membranes may subserve neuronal function: 1. The resonant frequency of a quasi-active membrane increases with increasing density of active channels. This might be one of the biophysical mechanisms generating the large range over which hair cells in the vertebrate cochlea display frequency tuning. 2. The voltage recorded from a cable with a quasi-active membrane can be proportional to the temporal derivative of the injected current. 3. We modeled a highly branched dendritic tree (-ganglion cell of the cat retina) using a quasi-active membrane. The voltage attenuation from a given synaptic site to the soma decreases with increasing frequency up to the resonant frequency, in sharp contrast to the behaviour of passive membranes. This might be the underlying biophysical mechanism of receptive fields whose dimensions are large for rapid signals but contract to a smaller area for slow signals as suggested by Detwiler et al. (1978).  相似文献   

18.
The classical cable equation, in which membrane conductance is considered constant, is modified by including the linearized effect of membrane potential on sodium and potassium ionic currents, as formulated in the Hodgkin-Huxley equations for the squid giant axon. The resulting partial differential equation is solved by numerical inversion of the Laplace transform of the voltage response to current and voltage inputs. The voltage response is computed for voltage step, current step, and current pulse inputs, and the effect of temperature on the response to a current step input is also calculated.The validity of the linearized approximation is examined by comparing the linearized response to a current step input with the solution of the nonlinear partial differential cable equation for various subthreshold current step inputs.All the computed responses for the squid giant axon show oscillatory behavior and depart significantly from what is predicted on the basis of the classical cable equation. The linearization procedure, coupled with numerical inversion of the Laplace transform, proves to be a convenient approach which predicts at least qualitatively the subthreshold behavior of the nonlinear system.  相似文献   

19.
Kole MH  Letzkus JJ  Stuart GJ 《Neuron》2007,55(4):633-647
Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.  相似文献   

20.
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, ‘active zone material’ (AZM), attached to the presynaptic membrane, and aggregates of Ca2+-channels in the membrane, through which Ca2+ enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca2+-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca2+-channels relative to the vesicles'' Ca2+-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca2+-triggering at other synapses, where the arrangement of active zone components differs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号