首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.  相似文献   

2.
The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genus Leishmania. The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates of Leishmania donovani promastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification of Leishmania elongation factor-1alpha (EF-1alpha) as a SHP-1-binding protein. Purified Leishmania EF-1alpha, but not host cell EF-1alpha, bound directly to SHP-1 in vitro leading to its activation. Three independent lines of evidence indicated that Leishmania EF-1alpha may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [(35)S]methionine-labeled organisms contained Leishmania EF-1alpha. Second, confocal, fluorescence microscopy using Leishmania-specific antisera detected Leishmania EF-1alpha in the cytosol of infected cells. Third, co-immunoprecipitation showed that Leishmania EF-1alpha was associated with SHP-1 in vivo in infected cells. Finally, introduction of purified Leishmania EF-1alpha, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-gamma. Thus, Leishmania EF-1alpha is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.  相似文献   

3.
Theileria annulata is an intracellular protozoan parasite that infects B cells and macrophages of ruminants. Macrophages infected with T. annulata are de-differentiated and display tumour cell properties and a metastatic behaviour. How parasitized cells adapt their morphology, motility and invasive behaviour has not yet been addressed in detail. In this study, I investigated the regulation of host cell actin dynamics in T. annulata-transformed macrophages and how this affects host cell morphology and motility. T. annulata was found to promote the formation of filamentous-actin-rich podosome-type adhesions (PTAs) and lamellipodia, and to establish a polarized morphology of the infected cell. Characteristic for parasite-dependent host cell polarization is that infected cells display a single, persistent lamellipodium. Src kinases--in particular Hck--are required for the polar extension of this lamellipodium. Hck does so by promoting the clustered assembly of PTAs and accumulation of proteins of the Ezrin, Radixin, Moesin (ERM) family in lamellipodia. Polar accumulation of PTAs and ERM proteins correlates with focal matrix degradation underneath lamellipodia. These findings suggest that T. annulata equips its host cell with properties to adhere and invade. These properties are likely to promote the motile behaviour required for dissemination of infected cells in vivo.  相似文献   

4.
Protective immunity to mycobacterial infections requires activation of the antibacterial mechanisms of infected macrophages. It has previously been reported that ATP treatment of mycobacteria-infected macrophages induces apoptosis mediated via the P2X(7) pathway and that this leads to the death of both the host cell and the internalized bacilli. We have recently identified a single nucleotide polymorphism in the P2X7 gene (1513A-->C), with 1-2% prevalence in the homozygous state, which codes for a nonfunctional receptor. IFN-gamma-primed, mycobacteria-infected macrophages from wild-type individuals were incubated with ATP and this induced apoptosis and reduced mycobacterial viability by 90%. Similar treatment of macrophages from individuals homozygous for the 1513C polymorphism failed to induce apoptosis and did not lead to mycobacterial killing via the P2X(7)-mediated pathway. These data demonstrate that a single nucleotide polymorphism in the P2X7 gene can allow survival of mycobacteria within infected host cells.  相似文献   

5.
Viruses have developed various strategies to protect infected cells from apoptosis. HIV-1 infected macrophages are long-lived and considered reservoirs for HIV-1. One significant deciding factor between cell survival and cell death is glucose metabolism. We hypothesized that HIV-1 protects infected macrophages from apoptosis in part by modulating the host glycolytic pathway specifically by regulating hexokinase-1 (HK-1) an enzyme that converts glucose to glucose-6-phosphate. Therefore, we analyzed the regulation of HK-1 in HIV-1 infected PBMCs, and in a chronically HIV-1 infected monocyte-like cell line, U1. Our results demonstrate that HIV-1 induces a robust increase in HK-1 expression. Surprisingly, hexokinase enzymatic activity was significantly inhibited in HIV-1 infected PBMCs and in PMA differentiated U1 cells. Interestingly, we observed increased levels of mitochondria-bound HK-1 in PMA induced U1 cells and in the HIV-1 accessory protein, viral protein R (Vpr) transduced U937 cell derived macrophages. Dissociation of HK-1 from mitochondria in U1 cells using a pharmacological agent, clotrimazole (CTZ) induced mitochondrial membrane depolarization and caspase-3/7 mediated apoptosis. Dissociation of HK-1 from mitochondria in Vpr transduced U937 also activated caspase-3/7 activity. These observations indicate that HK-1 plays a non-metabolic role in HIV-1 infected macrophages by binding to mitochondria thereby maintaining mitochondrial integrity. These results suggest that targeting the interaction of HK-1 with the mitochondria to induce apoptosis in persistently infected macrophages may prove beneficial in purging the macrophage HIV reservoir.  相似文献   

6.
Nucleotides are released into the extracellular milieu from infected cells and cells at inflammatory sites. The extracellular nucleotides bind to specific purinergic (P2) receptors and thereby induce a variety of cellular responses including anti-parasitic effects. Here we investigated whether extracellular nucleotides affect leishmanial infection in macrophages, and found that UTP reduces strongly the parasite load in peritoneal macrophages. Ultrastructural analysis of infected cells revealed that UTP induced morphological damage in the intracellular parasites. Uridine nucleotides also induced dose-dependent apoptosis of macrophages and production of ROI and RNI only in infected macrophages. The intracellular calcium measurements of infected cells showed that the response to UTP, but not UDP, increased the sensitivity and amplitude of cytosolic Ca(2+) changes. Infection of macrophages with Leishmania upregulated the expression of P2Y(2) and P2Y(4) receptor mRNA. The data suggest indirectly that Leishmania amazonensis infection induces modulation and heteromerization of P2Y receptors on macrophages. Thus UTP modulates the host response against L. amazonensis infection. UTP and UTP homologues should therefore be considered as novel components of therapeutic strategies against cutaneous leishmaniasis.  相似文献   

7.
Proteophosphoglycan (PPG) is a newly described mucin-like glycoprotein found on the surface of Leishmania major promastigotes and secreted in the culture supernatant. We show here that antigenically similar PPGs are present in several Leishmania species. PPG could also be detected on the surface of amastigotes and in small, parasite-free vesicles in infected macrophages. Because of the similarity of its carbohydrate chains to lipophosphoglycan, a parasite receptor for host macrophages, PPG was tested for binding to macrophages. PPG bound to macrophages and was internalized in a time-dependent manner. PPG inhibited the production of tumor necrosis factor-alpha and synergized with interferon-gamma to stimulate the production of nitric oxide by macrophages. PPG may contribute to the binding of Leishmania to host cells and may play a role in modulating the biology of the infected macrophage at the early stage of infection.  相似文献   

8.
Francisella tularensis is a highly infectious bacterial pathogen, and is likely to have evolved strategies to evade and subvert the host immune response. In this study, we show that F. tularensis infection of macrophages alters T cell responses in vitro, by blocking T cell proliferation and promoting a Th2-like response. We demonstrate that a soluble mediator is responsible for this effect and identify it as PGE(2). Supernatants from F. tularensis-infected macrophages inhibited IL-2 secretion from both MHC class I and MHC class II-restricted T cell hybridomas, as well as enhanced a Th2-like response by inducing increased production of IL-5. Furthermore, the soluble mediator blocked proliferation of naive MHC class I-restricted T cells when stimulated with cognate tetramer. Indomethacin treatment partially restored T cell proliferation and lowered IL-5 production to wild-type levels. Macrophages produced PGE(2) when infected with F. tularensis, and treatment of infected macrophages with indomethacin, a cyclooxygenase-1/cyclooxygenase-2 inhibitor, blocked PGE(2) production. To further demonstrate that PGE(2) was responsible for skewing of T cell responses, we infected macrophages from membrane PGE synthase 1 knockout mice (mPGES1(-/-)) that cannot produce PGE(2). Supernatants from F. tularensis-infected membrane PGE synthase 1(-/-) macrophages did not inhibit T cell proliferation. Furthermore, treatment of T cells with PGE(2) recreated the effects seen with infected supernatant. From these data, we conclude that F. tularensis can alter host T cell responses by causing macrophages to produce PGE(2). This study defines a previously unknown mechanism used by F. tularensis to modulate adaptive immunity.  相似文献   

9.
More than 2 billion people are infected with Mycobacterium. tuberculosis; however, only 5-10% of those infected will develop active disease. Recent data suggest that containment is controlled locally at the level of the granuloma and that granuloma architecture may differ even within a single infected individual. Formation of a granuloma likely requires exposure to mycobacterial components released from infected macrophages, but the mechanism of their release is still unclear. We hypothesize that exosomes, which are small membrane vesicles containing mycobacterial components released from infected macrophages, could promote cellular recruitment during granuloma formation. In support of this hypothesis, we found that C57BL/6 mouse-derived bone marrow macrophages treated with exosomes released from M. tuberculosis-infected RAW264.7 cells secrete significant levels of chemokines and can induce migration of CFSE-labeled macrophages and splenocytes. Exosomes isolated from the serum of M. bovis bacillus Calmette-Guérin-infected mice could also stimulate macrophage production of chemokines and cytokines ex vivo, but the level and type differed during the course of a 60-d infection. Of interest, the exosome concentration in serum correlated strongly with mouse bacterial load, suggesting some role in immune regulation. Finally, hollow fiber-based experiments indicated that macrophages treated with exosomes released from M. tuberculosis-infected cells could promote macrophage recruitment in vivo. Exosomes injected intranasally could also recruit CD11b(+) cells into the lung. Overall, our study suggests that exosomes may play an important role in recruiting and regulating host cells during an M. tuberculosis infection.  相似文献   

10.
Granulomas are organized host immune structures composed of tightly interposed macrophages and other cells that form in response to a variety of persistent stimuli, both infectious and noninfectious. The tuberculous granuloma is essential for host containment of mycobacterial infection, although it does not always eradicate it. Therefore, it is considered a host-beneficial, if incompletely efficacious, immune response. The Mycobacterium RD1 locus encodes a specialized secretion system that promotes mycobacterial virulence by an unknown mechanism. Using transparent zebrafish embryos to monitor the infection process in real time, we found that RD1-deficient bacteria fail to elicit efficient granuloma formation despite their ability to grow inside of infected macrophages. We showed that macrophages infected with virulent mycobacteria produce an RD1-dependent signal that directs macrophages to aggregate into granulomas. This Mycobacterium-induced macrophage aggregation in turn is tightly linked to intercellular bacterial dissemination and increased bacterial numbers. Thus, mycobacteria co-opt host granulomas for their virulence.  相似文献   

11.
Leishmania are obligate intracellular parasites that invade and survive within host macrophages and can result in visceral leishmaniasis, a major public health problem worldwide. The entry of intracellular parasites, in general, involves interaction with the plasma membrane of host cells. Cholesterol in host cell membranes was recently shown to be necessary for binding and internalization of Leishmania and for the efficient presentation of leishmanial antigens in infected macrophages. This article describes the need to explore cyclodextrin-based compounds, which modulate host membrane cholesterol levels, as a possible therapeutic strategy against leishmaniasis in addition to other intracellular parasites.  相似文献   

12.
Granulomas are organized host immune structures composed of tightly interposed macrophages and other cells that form in response to a variety of persistent stimuli, both infectious and noninfectious. The tuberculous granuloma is essential for host containment of mycobacterial infection, although it does not always eradicate it. Therefore, it is considered a host-beneficial, if incompletely efficacious, immune response. The Mycobacterium RD1 locus encodes a specialized secretion system that promotes mycobacterial virulence by an unknown mechanism. Using transparent zebrafish embryos to monitor the infection process in real time, we found that RD1-deficient bacteria fail to elicit efficient granuloma formation despite their ability to grow inside of infected macrophages. We showed that macrophages infected with virulent mycobacteria produce an RD1-dependent signal that directs macrophages to aggregate into granulomas. This Mycobacterium-induced macrophage aggregation in turn is tightly linked to intercellular bacterial dissemination and increased bacterial numbers. Thus, mycobacteria co-opt host granulomas for their virulence.  相似文献   

13.
14.
Macrophages are host cells for the pathogenic parasite Leishmania major. Neutrophils die and are ingested by macrophages in the tissues. We investigated the role of macrophage interactions with inflammatory neutrophils in control of L. major infection. Coculture of dead exudate neutrophils exacerbated parasite growth in infected macrophages from susceptible BALB, but killed intracellular L. major in resistant B6 mice. Coinjection of dead neutrophils amplified L. major replication in vivo in BALB, but prevented parasite growth in B6 mice. Neutrophil depletion reduced parasite load in infected BALB, but exacerbated infection in B6 mice. Exacerbated growth of L. major required PGE(2) and TGF-beta production by macrophages, while parasite killing depended on neutrophil elastase and TNF-alpha production. These results indicate that macrophage interactions with dead neutrophils play a previously unrecognized role in host responses to L. major infection.  相似文献   

15.
Myeloid cell leukemia-1 (Mcl-1) plays an important role in various cell survival pathways. Some studies indicated that the expression of Mcl-1 was upregulated in host cells during infection with the virulent Mycobacterium tuberculosis strain, H37Rv. The present study was designed to investigate the effect of inhibiting Mcl-1 expression both in vivo and in vitro on apoptosis of host macrophages infected with M. tuberculosis using a small hairpin (sh)RNA. Mcl-1 expression was detected by the real time-polymerase chain reaction, western blotting, and immunohistochemistry. Flow cytometry and transmission electron microscopy were used to measure host macrophage apoptosis. We found elevated Mcl-1 levels in host macrophages infected with M. tuberculosis H37Rv. The expression of Mcl-1 was downregulated efficiently in H37Rv-infected host macrophages using shRNA. Knockdown of Mcl-1 enhanced the extent of apoptosis in H37Rv-infected host macrophages significantly. The increased apoptosis correlated with a decrease in M. tuberculosis colony forming units recovered from H37Rv-infected cells that were treated with Mcl-1-shRNA. Reducing Mcl-1 accumulation by shRNA also reduced accumulation of the anti-apoptotic gene, Bcl-2, and increased expression of the pro-apoptotic gene, Bax, in H37Rv-infected host macrophages. Our results showed that specific knockdown of Mcl-1 expression increased apoptosis of host macrophages significantly and decreased the intracellular survival of a virulent strain of M. tuberculosis. These data indicate that interference with Mcl-1 expression may provide a new avenue for tuberculosis therapy.  相似文献   

16.
Previous reports have suggested a role for natural killer (NK) cells in directly lysing host cells infected with bacteria and other intracellular microorganisms. Here, we determined the inability of a highly homogeneous population of lymphokine activated killer (LAK) cells to kill macrophages infected with the following intracellular parasites: Mycobacterium avium, Listeria monocytogenes, Legionella pneumophila, Toxoplasma gondii, and Trypanosoma cruzi. In parallel cytotoxicity assays, LAK cells lysed the tumor targets YAC-1 and P815 effectively. Furthermore, we were able to demonstrate that influenza-specific cytotoxic T lymphocytes (CTL), but not LAK cells, were efficient killers of influenza virus-infected macrophages.  相似文献   

17.
Mechanisms for macrophage-mediated HIV-1 induction   总被引:2,自引:0,他引:2  
Viral latency is a long-term pathogenic condition in patients infected with HIV-1. Low but sustained virus replication in chronically infected cells can be activated by stimulation with proinflammatory cytokines such as TNF-alpha, IL-1 beta, or other host factors. However, the precise mechanism by which cellular activation induces latently infected cells to produce virions has remained unclear. In the present report, we present evidence that activation of HIV-1 replication in latently infected U1 or ACH2 cells by human macrophages is mediated by a rapid nuclear localization of NF-kappaB p50/p65 dimer with concomitant increased expression of proinflammatory cytokines. Multiplexed RT-PCR amplification of mRNA isolated from cocultures of macrophages and U1 and ACH2 cells showed significant induction of IL-1beta, IL-6, IL-8, TNF-alpha, and TGF-beta expression within 3 h of coincubation. Fixation of macrophages, U-1, or ACH2 cells with paraformaldehyde before coculture completely abrogated the induction of NF-kappaB subunits and HIV-1 replication, suggesting that cooperative interaction between the two cell types is an essential process for cellular activation. Pretreatment of macrophage-U1 or macrophage-ACH2 cocultures with neutralizing anti-TNF-alpha Ab down-regulated the replication of HIV-1. In addition, pretreatment of macrophage-U1 or macrophage-ACH2 cocultures with the NF-kappaB inhibitor (E)3-[(4-methylphenyl)sulfonyl]-2-propenenitrile (BAY 11-7082) prevented the induction of cytokine expression, indicating a pivotal role of NF-kappaB-mediated signaling in the reactivation of HIV-1 in latently infected cells by macrophages. These results provide a mechanism by which macrophages induce HIV-1 replication in latently infected cells.  相似文献   

18.
Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of expression of cytokines in macrophages. This finding suggests that CAEV may modulate the accessory functions of infected macrophages and the antiviral immune response in vivo.  相似文献   

19.
Salmonella species represent a leading cause of gastroenteritis worldwide. More recently, they have been proposed as putative vaccine delivery vehicles in humans. Oral infection with Salmonella leads to invasion of the intestinal epithelial barrier and subsequent interaction with mucosal macrophages. In this study, we investigated the fate of Salmonella typhimurium-infected human macrophages differentiated from blood monocytes by GM-CSF. Wild type S. typhimurium strain SL1344 induced macrophage surface blebbing and caused the release of host cytoplasmic lactate dehydrogenase beginning 30 min post-infection. Three hours later more than 80% of the macrophages in the culture were killed. In contrast, during the same period, macrophages infected with the non-invasive S. typhimurium strain BJ66 remained viable. Chromatin fragmentation is a hallmark of cells undergoing apoptosis. Using TUNEL analysis, we observed chromatin fragmentation in macrophages infected with SL1344 but not in BJ66 infected cells. Consistent with this observation, we found that pretreatment of human macrophages with an inhibitor of caspase-3, a member of the pro-apoptotic enzyme family shown to be involved in S. typhimurium-induced killing of mouse macrophages, reduced SL1344-mediated cytotoxicity by 40%. Our study provides the first evidence that invasive S. typhimurium induces apoptosis in human macrophages that were differentiated from blood monocytes by GM-CSF, and that cell death is a caspase-dependent phenomenon.  相似文献   

20.
We examined in this work whether rTNF inhibits the capacity of Trypanosoma cruzi to multiply within murine macrophages or enhances the ability of the phagocytic host cells to destroy internalized parasites. We found that rTNF would not alter the fate of the trypanosomes within macrophages over a 48-h incubation period unless the latter cells were also treated with 1 ng/ml bacterial endotoxin (LPS). Treatment of macrophages with rTNF plus LPS, but not separate treatment with either rTNF or LPS, resulted in a significant decrease in the number of organisms per 100 macrophages with respect to values obtained with mock-treated macrophages. In addition, there was a significant reduction in the proportion of infected macrophages over the 48-h incubation period, indicating parasite clearance by the host cells. The combined effects of rTNF and LPS were seen when macrophages from CBA/J were used but not with LPS-insensitive macrophages from C3H/HeJ mice. Increased trypanosome killing by CBA/J macrophages treated with rTNF plus LPS was not seen when catalase was present in the culture medium, indicating a role for hydrogen peroxide in the cytotoxic effect. These results show that rTNF can affect the fate of T. cruzi within macrophages if LPS is present and point to destruction of internalized organisms rather than inhibition of parasite multiplication as the most likely explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号