首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
People come in different shapes and sizes. In particular, calf muscle size in humans varies considerably. One possible cause for the different shapes of calf muscles is the inherent difference in neural signals sent to these muscles during walking. In sedentary adults, the variability in neural control of the calf muscles was examined with muscle size, walking kinematics and limb morphometrics. Half the subjects walked while activating their medial gastrocnemius (MG) muscles more strongly than their lateral gastrocnemius (LG) muscles during most walking speeds ('MG-biased'). The other subjects walked while activating their MG and LG muscles nearly equally ('unbiased'). Those who walked with an MG-biased recruitment pattern also had thicker MG muscles and shorter heel lengths, or MG muscle moment arms, than unbiased walkers, but were similar in height, weight, lower limb length, foot length, and exhibited similar walking kinematics. The relatively less plastic skeletal system may drive calf muscle size and motor recruitment patterns of walking in humans.  相似文献   

2.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

3.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

4.
Motor units of the medial gastrocnemius (MG) and the single lateral gastrocnemius/soleus (LG/S) muscles of the opossum (Didelphis virginiana) were found to have uniformly slow contraction times relative to homologous muscles of the cat. Though a broad range of peak tetanic tensions was found among motor units from both muscles, most of the motor units were quite large relative to tension of the whole muscle. Comparison of the relative sizes of motor units showed that those of LG/S are significantly larger and slower than the units of MG. This suggests that the motor units of the two muscles may be differentially recruited during different behaviors. All of the MG and LG/S motor units were highly or moderately resistant to fatigue. Histochemical staining for NADH-diaphorase activity indicated consistently high levels of the enzyme in all of the fibers of both muscles. Apparently, all of the fast motor units consist of fast oxidative/glycolytic (FOG)-type muscle fibers. Our data provide functional evidence that the types of myofibrillar ATPase demonstrated by Brooke and Kaiser ('70), are not necessarily correlated to physiological classification of fiber types as slow oxidative (SO), fast oxidative/glycolytic (FOG), and fast glycolytic (FG) (Peter et al., '72). Perhaps compartmentalization of muscle fiber types may be a first step in the separation of muscles into multiple heads during the evolution of specialization to diverse locomotor habits among the mammals.  相似文献   

5.
This study aimed to investigate whether fatigue-induced changes in synergistic muscle forces match their tendon elongation. The medial gastrocnemius muscle (MG) was fatigued by repeated electrical stimulation (1 min×5 times: interval 30 s, intensity: 20–30% of maximal voluntary plantar flexion torque) applied at the muscle belly under a partial occlusion of blood vessels. Before and after the MG fatigue task, ramp isometric contractions were performed voluntarily, during which tendon elongations were determined by ultrasonography, along with recordings of the surface EMG activities of MG, the soleus (SOL) and the lateral gastrocnemius (LG) muscles. The tendon elongation of MG and SOL in post-fatigue ramp was similar, although evoked MG forces dropped nearly to zero. In addition, for a given torque output, the tendon elongation of SOL significantly decreased while that of LG did not, although the activation levels of both muscles had increased. Results suggest that the fatigue-induced changes in force of the triceps surae muscles do not match their tendon elongation. These results imply that the tendons of the triceps surae muscles are mechanically coupled even after selective fatigue of a single muscle.  相似文献   

6.
Ultrasonography was used to measure the pennation angle of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (Sol). The right and left legs of 8 male and 8 female subjects were tested at rest and during maximum voluntary contraction (MVC). Joint angles were chosen to control muscle tendon lengths so that the muscles were near their optimal length within the length-tension relationship. No differences in pennation angle were detected between the right and left legs. Another consistent finding was that the pennation angle at MVC was significantly greater than at rest for all muscles tested. Optimal pennation angles for the TA, MG, and Sol were significantly greater for the men than for the women. Optimal pennation angles for the TA, LG, MG, and Sol for the male subjects were 14.3 degrees, 23.7 degrees, 34.6 degrees, and 40.1 degrees respectively, whereas values of 12.1 degrees, 16.3 degrees, 27.3 degrees, and 26.3 degrees were recorded for the female subjects. The results of this study suggest the following: (1) similar values for pennation angle can be used for the right and left TA, LG, MG, and Sol; (2) pennation angle is significantly greater at MVC than at rest for all muscles tested; and (3) sex-specific values for optimal pennation angle should be used when modeling the force-generating potential of the primary muscles responsible for ankle plantar and dorsiflexion.  相似文献   

7.
The purposes of this study were 1) to quantify the volume of activated parts within a whole muscle and 2) to examine activated area distributions along the length of muscle. Seven male subjects performed five sets of 10 repetitions of a single-leg calf-raise exercise with the knee fully extended. Transverse relaxation time (T2)-weighted spin echo images were acquired before and immediately after the exercise. A range of pixels with a T2 greater than the mean +1 SD of the region of interest (ROI) from the preexercise image and pixels with a T2 lower than the mean + SD of the ROI from the postexercise image were defined as "active" muscle. The active muscle images were three dimensionally reconstructed, from which the volume of the activated muscle was determined for individual triceps surae (TS) muscles. Our data indicate that approximately 46% of the medial gastrocnemius (MG) muscle was activated during the exercise, with activation of the lateral gastrocnemius (LG) and soleus (Sol) muscles being approximately 35%. In the MG, distal portions had a greater percentage area of activated muscle than the proximal portions (P < 0.05), which was consistent with the results regarding electromyogram activity. In contrast, regional activation differences were not observed in the LG and Sol. These findings suggest that the amounts of activated muscle and its distribution would be different among TS muscles.  相似文献   

8.
The architectural properties of the triceps surae muscle were studied in vivo in groups of healthy subjects (eight men) and patients with locomotor function disorders (four men and four women) with the ankle joint positioned at a plantar flexion 0° and the knee set at 90° (neutral position). In this position, using ultrasonic scanning, longitudinal ultrasonic images of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles were obtained when the subject was relaxed (the passive state) or performed isometric plantar flexion (50% of the maximum voluntary contraction (MVC), the active state). The fascicle lengths, fascicle angles, and muscle thickness were determined. In the passive state, the fascicle lengths of the MG, LG, and Sol muscles in the group of healthy subjects were 33, 35, and 30 mm and the pennation angle, 25°, 19°, and 25°; in the group of patients with motor disorders, 38, 39, and 29 mm and 21°, 19°, and 24°, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects were 15, 13, and 12 mm, and in the group of patients with motor disorders, 14, 12, and 14 mm, respectively. In the active state (50% of the MVC), the MG, LG, and Sol fiber lengths in the group of healthy subjects shortened by 31, 24, and 18%; the fiber pennation angle increased by 60, 41, and 41%, respectively. In the group of patients with motor disorders, the fiber lengths shortened by 28, 14, and 18% and the fiber pennation angle decreased by 28, 26, and 36%, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects increased by 9, 22, and 18%, while in the group of patients with motor disorders the thickness decreased by 4% in the MG and increased by 11 and 4% in the LG and Sol muscles, respectively. Different fiber lengths and pennation angles and their changes upon contraction might be related to differences in the force-producing capabilities of the muscles and the viscoelastic properties of muscle tendons and aponeuroses.  相似文献   

9.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

10.
The purpose ofthis study was to investigate the functional interrelationship betweensynergistic muscle activities during low-level fatiguing contractions.Six human subjects performed static and dynamic contractions at anankle joint angle of 110° plantar flexion and within the range of90-110° (anatomic position = 90°) under constant load(10% maximal voluntary contraction) for 210 min. Surfaceelectromyogram records from lateral gastrocnemius (LG), medialgastrocnemius (MG), and soleus (Sol) muscles showed high and silentactivities alternately in the three muscles and a complementary andalternate activity between muscles in the time course. In the secondhalf of all exercise times, the number of changes in activity increasedsignificantly (P < 0.05) in each muscle. The ratios of active to silent periods of electromyogram activity were significantly higher (P < 0.05) in MG (4.5 ± 2.2) and Sol (4.3 ± 2.8) than in the LG(0.4 ± 0.1), but no significant differences were observed betweenMG and Sol. These results suggest that the relativeactivation of synergistic motor pools are not constant during alow-level fatiguing task.

  相似文献   

11.
The exact mechanical function of synergist muscles within a human limb in vivo is not well described. Recent studies indicate the existence of a mechanical interaction between muscle actuators that may have functional significance and further play a role for injury mechanisms. The purpose of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary isometric hallux flexion, passive hallux extension, and selective percutaneous stimulation of the gastrocnemius medialis (MG). In each experiment plantar- and hallux flexion force and corresponding EMG activity were sampled. During all tasks ultrasonography was applied at proximal and distal sites to assess task-induced tissue displacement (which is assumed to represent loading) for the plantarflexor muscles [MG, soleus (SOL), and flexor hallucis longus (FHL)]. Selective MG stimulation and passive knee extension resulted in displacement of both the MG and SOL muscles. Minimal displacement of the triceps surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited evidence was provided for the occurrence of force transfer between the triceps surae and the deeper-lying FHL.  相似文献   

12.
A large inter-individual variation is seen in muscle fascicle length of the athletes but the reasons for this phenomenon are unclear. The purpose of this study was to determine whether genetic factors contribute to the variances in muscle architectural characteristics. Nine monozygous twin pairs (3 males and 6 females), mean age 23 years (range 17-40) were studied. Fascicle length, pennation angle, and muscle thickness of the medial (MG) and lateral (LG) gastrocnemius muscles were measured in vivo by B-mode ultrasound. In the LG muscle intrapair resemblance (P < 0.01) for fascicle length (r = 0.98), pennation angle (r = 0.94) and muscle thickness (r = 0.86) were observed. In MG muscle, however, there was no intrapair resemblance for fascicle length (r = 0.66, P > 0.05), although pennation angle (r = 0.73, P < 0.05) and muscle thickness (r = 0.86, P < 0.01) were significant. Mean percent intrapair difference in LG and MG muscles were 1.8% and 5.1% for fascicle length, 11.3% and 12.3% for pennation angle and 12.4% and 9.9% for muscle thickness, respectively. There is intrapair difference between muscle thickness and pennation angle in both MG (r = 0.69, P < 0.05) and LG (r = 0.70, P < 0.05) muscles. However, no significant correlation was observed for intrapair difference between muscle thickness and fascicle length in both muscles (MG, r = 0.46; LG, r = 0.40). It appears that genetic predisposition is the predominant factor for the determination of muscle fascicle length. However, a lack of intrapair resemblance in MG fascicle length raises the possibility that fascicle length may be further influenced by external environmental factors such as physical training.  相似文献   

13.
During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity.  相似文献   

14.
Recent work has provided measurements of power output in avian skeletal muscles during running and flying, but little is known about the contractile properties of avian skeletal muscle. We used an in situ preparation to characterize the force-velocity properties of two hind limb muscles, the lateral gastrocnemius (LG) and peroneus longus (PL), in Wild Turkeys (Meleagris gallopavo). A servomotor measured shortening velocity for at least six different loads over the plateau region of the length-tension curve. The Hill equation was fit to the data to determine maximum shortening velocity and peak instantaneous power. Maximum unloaded shortening velocity was 13.0+/-1.6 L s(-1) for the LG muscle and 14.8+/-1.0 L s(-1) for the PL muscle (mean+/-S.E.M.). These velocities are within the range of values published for reptilian and mammalian muscles. Values recorded for maximum isometric force per cross-sectional area, 271+/-28 kPa for the LG and 257+/-30.5 kPa for the PL, and peak instantaneous power output, 341.7+/-36.4 W kg(-1) for the LG and 319.4+/-42.5 W kg(-1) for the PL, were also within the range of published values for vertebrate muscle. The force-velocity properties of turkey LG and PL muscle do not reveal any extreme differences in the mechanical potential between avian and other vertebrate muscle.  相似文献   

15.
Ultrasonography was used to measure pennation angle and electromyography (EMG) to record muscle activity of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (SOL) muscles during graded isometric ankle plantar and dorsiflexion contractions done on a Biodex dynamometer. Data from 8 male and 8 female subjects were collected in increments of approximately 25% of maximum voluntary contraction (MVC) ranging from rest to MVC. A significant positive linear relationship (p<0.05) between normalized EMG and pennation angle for all muscles was observed when subject specific pennation angles at rest and MVC were included in the analysis. These were included to account for gender differences and inter-subject variability in pennation angle. The coefficient of determination, R(2), ranged between 0.76 for the TA and 0.87 for the SOL. The EMG-pennation angle relationships have ramifications for use in EMG-driven models of muscle force. The regression equations can be used to characterize fiber pennation angle more accurately and to determine how it changes with contraction intensity, thus providing improved estimates of muscle force when using musculoskeletal models.  相似文献   

16.
The muscles of the triceps surae group are important for performance in most sports and in the performance of activities of daily life. In addition, hypertrophy and balance among these muscles are integral to success in bodybuilding. The purpose of this study was to compare the muscle utilization patterns of the 2 major muscles of the triceps surae group, the soleus (SOL) and gastrocnemius (lateral head = LG and medial head = MG), and the tibialis anterior (TA) as an antagonist muscle to the group. Their electromyographic (EMG) signals were compared during 50 constant external resistance contractions at a level established before the testing session. Eleven experienced subjects contributed data during plantar flexion at 3 different knee angles (90, 135, and 180 degrees ). Both root mean square amplitude and integrated signal analyses of the EMGs revealed that the MG produced significantly greater activity than either the SOL or TA at 180 degrees, whereas the LG was not different from the SOL at any knee angle measured. Data also revealed that the SOL produced less electrical activity at 180 degrees than at the other knee angles, whereas the MG produced greater electrical activity. As would be expected, the TA produced lower EMG values than any of the triceps surae muscles at all angles tested. These data indicate that selective targeting of the SOL and MG is possible through the manipulation of knee angle. This targeting appears to be controlled by the biarticular and monoarticular structures of the MG and SOL, respectively. The LG appears less affected by knee position than the MG. Results suggest that the SOL can be targeted most effectively with the knee flexed at 90 degrees and the MG with the leg fully extended. The LG appears to also be more active at 180 degrees; however, it is not as affected as the MG or SOL by knee angle.  相似文献   

17.
The aim of this study was to quantitatively describe the relationships between joint angles and muscle architecture (lengths (Lf) and angles (Θf) of fascicles) of human triceps surae [medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles] in vivo for three men-cosmonaut after long-duration spaceflight. Sagittal sonographs of MG, LG, SOL were taken at ankle was positioned at 15° (dorsiflexion), 0° (neutral position), +15°, and +30° (plantarflexion), with the knee at 90° at rest and after a long-duration spaceflight. At each position, longitudinal ultrasonic images of the MG and LG and SOL were obtained while the cosmonauts was relaxed from which fascicle lengths and angles with respect to the aponeuroses were determined. After space flight plantarflexor force declined significantly (26%; p < 0.001). The internal architecture of the GM, and LG, and SOL muscle was significantly altered. In the passive condition, Lf changed from 45, 53, and 39 mm (knee, 0°, ankle, −15°) to 26, 33, and 28 mm (knee, 90° ankle, 30°) for MG, LG, and SOL, respectively. Different lengths and angles of fascicles, and their changes by contraction, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. The three heads of the triceps surae muscle substantially differ in architecture, which probably reflects their functional roles. Differences in fiber length and pennation angle that were observed among the muscles and could be associated with differences in force production and in elastic properties of musculo-tendinous complex and aponeuroses.  相似文献   

18.
The objective of this work was to develop a noninvasive method to measure the joint torques produced by biarticular muscles at two joints simultaneously. During intramuscular stimulation of the cat medial gastrocnemius (MG) muscle, torques at the ankle and knee joints were calculated from forces measured in two dimensions at the end point of the cat paw under isometric conditions. The method was verified by the known anatomical properties of cat MG muscle and the tibialis anterior (TA) muscle. The MG muscle was shown to produce a significant flexion torque at the knee, besides an extension torque at the ankle. This was in agreement with its anatomical arrangement. The TA muscle produced primarily an ankle flexion torque. The small knee torque, due to measurement errors, yielded an estimate of measurement accuracy of 3.0 +/- 2.1% (n = 52). The coupling ratio of the MG muscle, defined as T(ankle)/T(knee), varied significantly with both knee and ankle angles. The profile of MG mechanical coupling agreed qualitatively with changes in limb configuration. The method can be used to measure recruitment properties of electrically stimulated biarticular muscles, and may potentially be used to study the biomechanics of biarticular coupling.  相似文献   

19.

Background  

Although the soleus (Sol), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles differ in function, composition, and innervations, it is a common practice is to investigate them as single H-reflex recording. The purpose of this study was to compare H-reflex recordings between these three sections of the triceps surae muscle group of healthy participants while lying and standing during three different ankle positions.  相似文献   

20.
The human triceps surae (soleus, medial (MG) and lateral (LG) gastrocnemii) is complex and important for posture and gait. The soleus exhibits markedly lower motor unit firing rates (MUFRs; ∼16 Hz) during maximal voluntary isometric contraction (MVC) than other limb muscles, but this information is unknown for the MG and LG. During multiple visits, subjects performed a series of 5–7, ∼7-s plantar flexor MVCs with tungsten microelectrodes inserted into the MG and LG. During a separate testing session, another group of subjects performed submaximal isometric contractions at 25%, 50%, and 75% MVC with inserted fine-wires in the MG, LG and soleus. Maximum steady-state MUFRs for MG and LG (∼23 Hz) were not different, but faster than prior reports for the soleus. No differences between the three triceps surae components were detected for 25% or 50% MVC, but at 75% MVC, the MG MUFRs were 31% greater than soleus. The triceps surae exhibit similar torque modulation strategies at <75% MVC, but to achieve higher contraction intensities (>75% MVC) the gastrocnemii rely on faster rates to generate maximal torque than the soleus. Therefore, the MG and LG exhibit a larger range of MUFR capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号