首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T lymphocyte activation resulting from antigen recognition involves a protein tyrosine kinase pathway which triggers phosphorylation of several cellular substrates including the CD3 zeta subunit of the T cell receptor (TCR) to form pp21. The homologous TCR-associated protein, CD3 eta, is an alternatively spliced product of the same gene locus as CD3 zeta. CD3 eta lacks one of six cytoplasmic tyrosine residues (Tyr-132) found in CD3 zeta and is itself not phosphorylated. Site-directed mutagenesis in conjunction with in vitro and in vivo phosphorylation studies herein demonstrates that Tyr-132 is required for the formation of pp21. Moreover, the differential phosphorylation of CD3 zeta versus CD3 eta is not due to a selective association of the known TCR-associated protein tyrosine kinase, p59fyn; p59fyn but not p56lck or p62yes is associated with each of the three TCR isoforms containing CD3 zeta 2, or CD3 eta 2, or CD3 zeta-eta. This association occurs through components of the TCR complex distinct from CD3 zeta or CD3 eta. In addition, we show that pp21 formation is not only dependent on Tyr-132 but results from concomitant phosphorylation of other CD3 zeta residues including Tyr-121. Mutation of Tyr-90, -121, or -132 does not alter primary signal transduction as shown by the ability of individual CD3 zeta Tyr----Phe mutants to produce interleukin-2 upon TCR stimulation. Thus, the substantial structural changes in CD3 zeta upon TCR stimulation as reflected by alteration in its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis may affect subsequent events such as receptor desensitization, receptor movement, and/or protein associations.  相似文献   

2.
Activation of murine T cells by antigen, antibodies binding the T cell antigen receptor, or stimulatory anti-Thy-1 antibodies results in rapid phosphorylation of the T cell receptor zeta chain on tyrosine residues. The T cell receptor is itself unlikely to be a tyrosine kinase; rather, it is probable that this receptor is coupled to a nonreceptor tyrosine kinase. To understand further this protein kinase pathway, additional targets of the tyrosine kinase have been sought by comparing anti-phosphotyrosine antibody immunoblots of cellular proteins from unactivated and activated T cell hybridomas. In addition to the T cell receptor zeta chain, two proteins of 53 and 62 kDa are phosphorylated on tyrosine residues after T cell activation. These phosphorylations require stimulatory anti-Thy-1 antibodies, antigen, or antireceptor antibody stimulation. The 53-kDa protein is preferentially phosphorylated by antigen or antireceptor antibody. Of interest is that variants of the murine T cell hybridoma lacking the T cell receptor zeta chain or lacking surface antigen receptor can nonetheless be stimulated by anti-Thy-1 antibodies to phosphorylate the 62-kDa substrate. In contrast to the tyrosine kinases of oncogenic viruses, the kinase coupled to the T cell antigen receptor appears to have a limited number of targets. These proteins are candidates for critical substrates in this protein tyrosine kinase pathway.  相似文献   

3.
Growth hormone (GH) influences a number of tissue-specific biological activities in diverse cell types. However, little is known about the biochemical pathway by which the signal initiated by GH binding to its cell-surface receptor is transduced. The GH receptor has been reported to be phosphorylated on tyrosine in 3T3-F442A cells, a cell line in which GH promotes differentiation and inhibits mitogen-stimulated growth; however, it is not known whether tyrosine phosphorylation plays a role in GH signal transduction. We report that GH treatment of 3T3-F442A cells resulted in the rapid tyrosine phosphorylation of at least four proteins. These included 42- (pp42) and 45-kDa (pp45) proteins immunologically related to ERK1 (extracellular signal-regulated kinase 1), a member of a family of serine/threonine protein kinases that are phosphorylated on tyrosine in response to mitogens. Prolonged phorbol ester pretreatment attenuated the tyrosine phosphorylation of pp42 and pp45 in platelet-derived growth factor-treated cells, but not in GH-treated cells. Maximal GH-stimulated tyrosine phosphorylation of pp42 and pp45 coincided with peak levels of a 42-kDa renaturable MBP kinase activity in lysates of GH-treated cells resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The observation that multiple cellular proteins are rapidly phosphorylated on tyrosine in response to physiological concentrations of GH suggests that tyrosine phosphorylation plays a role in GH signal transduction. Moreover, the stimulation of tyrosine phosphorylation of ERK-related proteins by GH suggests that mitogens and nonmitogens may employ common phosphotyrosyl proteins in the activation of ultimately distinct cellular programs.  相似文献   

4.
Lipoteichoic acid (LTA) is an amphipathic component of Gram-positive bacteria. Previous studies from this laboratory have shown that at low concentrations, ranging from 0.1 to 10.0 micrograms/ml, LTA binds to mammalian cells and stimulates mitogenic responses as demonstrated by increased DNA and RNA synthesis. Tyrosine kinase appears to be involved in the action of a number of mitogens including epidermal growth factor, platelet-derived growth factor, and insulin. In the present study, we report the novel finding that tyrosine protein kinase activity is increased in human fibroblasts treated with LTA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of the whole cell lysate of fibroblasts cultured with 32Pi showed increased phosphorylation of a 94-kDa polypeptide. Alkali treatment of the gel resulted in a decreased intensity of the 94-kDa phosphorylated protein in control cells, but not in LTA-treated cells, suggesting the addition of phosphate groups to threonine or tyrosine residues. High voltage electrophoresis of the acid hydrolysate of the excised and eluted 94-kDa protein revealed that LTA stimulated the phosphorylation of tyrosine but not threonine residues. These results suggest that LTA acts on mammalian cells by phosphorylating tyrosine residues of certain proteins and thereby may regulate diverse functions of these cells.  相似文献   

5.
Tyrosine phosphorylation is an early biochemical event associated with surface receptor triggering in many cellular systems. In T lymphocytes, Ag receptor (CD3-Ti) stimulation results in tyrosine phosphorylation of the CD3 zeta subunit. The tyrosine kinase responsible for this modification after CD3-Ti triggering has not been identified. Here we reported that a 68-kDa T cell membrane-associated protein (pp68) in human Jurkat T cells is phosphorylated on tyrosine residues within 1 min after anti-CD3 mAb addition. This induced tyrosine phosphorylation is detected either by in vivo [32P]orthophosphate labeling of the Jurkat T cells or by in vitro [32P]ATP labeling after immunoprecipitation by antiphosphotyrosine antibody. In contrast, mAb stimulation via CD2 and CD4 structures does not induce phosphorylation of pp68. These data are among the first to provide evidence that CD3-Ti and CD2 activation pathways are distinct. Furthermore, they imply that pp68 is itself a tyrosine kinase and/or is a rapidly phosphorylated substrate of a tyrosine kinase.  相似文献   

6.
Multiple kinases interact at the multicomponent murine T cell antigen receptor. Antigen induces serine phosphorylation of the 21-kDa gamma glycoprotein and tyrosine phosphorylation of p21, a distinct 21-kDa chain. We demonstrate that tyrosine phosphorylation is due to kinase activation, and that all phosphorylated p21 is associated with the antigen receptor. We also show that antigen leads to polyphosphoinositide metabolism and subsequent protein kinase C activation. The two phosphorylation events can be dissociated by protein kinase C depletion, which eliminates phorbol 12-myristate 13-acetate-induced serine but not tyrosine phosphorylation. Activation of a third kinase, cyclic AMP-dependent protein kinase, inhibits both serine and tyrosine events, yet this inhibition can be modulated by addition of the protein kinase C activator, phorbol 12-myristate 13-acetate. Receptor-mediated signal transduction may be understood as the interaction of multiple stimulatory and inhibitory kinase activities.  相似文献   

7.
We have examined the insulin-dependent phosphorylation of the insulin receptor in the isolated plasma membranes of 3T3-F442A adipocytes. Phosphorylation of the insulin receptor is detected readily in the plasma membrane of these cells by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of sodium dodecyl sulfate and under nonreducing conditions, the predominant species of phosphorylated insulin receptor has an apparent molecular mass of 350,000 daltons with the beta-subunit (92,000 daltons) being phosphorylated. The phosphorylation of the insulin receptor in the isolated plasma membrane is absolutely dependent on insulin; tyrosine residues and, to a lesser extent, serine residues of the receptor are phosphorylated. Treatment of the plasma membrane with N-ethylmaleimide (NEM) has two effects; 1) NEM prevents the formation of a larger form (greater than 350,000 daltons) of the phosphorylated insulin receptor. The formation of this larger form of the receptor involves sulfhydryl oxidation which occurs at 37 degrees C under nondenaturing conditions, but does not occur at 0 degrees C or at room temperature even in the presence of sodium dodecyl sulfate. These results indicate that the larger form of the phosphorylated receptor can occur under physiological conditions and suggest that this process may be relevant to aggregation of the receptor-ligand complex. 2) Prior to treatment with insulin, NEM enhances the phosphorylation of the insulin receptor. Phosphopeptide analysis indicates that the site(s) of phosphorylation of the receptor is identical in the presence or absence of NEM.  相似文献   

8.
Occupancy of the T cell antigen receptor triggers a complex set of events that culminate in cellular activation. It is clear that tyrosine kinases play important roles in this process. The zeta subunit of the T cell antigen receptor is a 16-kDa transmembrane structure that exists primarily as a disulfide-linked homodimer. On receptor activation, a subset of zeta molecules undergo tyrosine phosphorylation. To evaluate this process and the role of zeta phosphorylation in T cell activation, site-specific mutagenesis of the intracytoplasmic tyrosines of zeta has been carried out. Analysis of cells expressing these mutant zeta subunits demonstrated that multiple tyrosines underwent phosphorylation in response to receptor engagement, and that the four most carboxyl tyrosines were most crucial to this process. Despite abnormalities in phosphorylation induced by the mutations, lymphokine production in these transfectants was unaffected. Hence, although zeta is a prominent substrate for a receptor-activated tyrosine kinase, neither the mutation of individual tyrosines nor the alteration of the phosphorylation state of the molecule substantively affected the coupling of T cell receptor activation to lymphokine production. These findings raise questions regarding the role of zeta phosphorylation in T cell activation.  相似文献   

9.
Murine interleukin-3 (mIL-3) stimulates the rapid and transient tyrosine phosphorylation of a number of proteins in mIL-3-dependent B6SUtA1 cells. Two of these proteins, p68 and p140, are maximally phosphorylated at tyrosine residues within 2 min of addition of mIL-3. Because 125I-mIL-3 can be cross-linked to both 70- and 140-kDa proteins on intact B6SUtA1 cells, we investigated whether the tyrosine phosphorylated p68 and p140 were these two mIL-3 receptor proteins. Addition of antiphosphotyrosine antibodies (alpha PTyr Abs) to cell lysates from B6SUtA1 cells, to which 125I-mIL-3 had been disuccinimidyl suberate-cross-linked, resulted in the immunoprecipitation of 125I-mIL-3 complexed to both 70- and 140-kDa proteins. To determine if the observed immunoprecipitation pattern was due to the direct interaction of alpha-PTyr Abs with these two mIL-3 receptor proteins or with tyrosine-phosphorylated proteins that were associated with the receptor proteins, cell lysates were treated with 2% sodium dodecyl sulfate, 5% 2-mercaptoethanol, and boiled for 1 min. After removal of sodium dodecyl sulfate and 2-mercaptoethanol, alpha PTyr Abs immunoprecipitated 125I-mIL-3 cross-linked to only the 140-kDa protein. To confirm this finding, 32P-labeled B6SUtA1 cells were treated with biotinylated or fluoresceinated mIL-3. Addition of immobilized streptavidin or antifluorescein antibodies, respectively, to cell lysates from these cells resulted in the enrichment of only a 140-kDa tyrosine phosphorylated protein. Taken together, these results strongly suggest that only the 140-kDa receptor protein is tyrosine phosphorylated upon mIL-3 binding.  相似文献   

10.
We have previously reported (Samelson, L.E., Patel, M.D., Weissman, A.M., Harford, J.B., and Klausner, R.D. (1986) Cell 46, 1083-1090) that T cell activation by antigen is associated with activation of two biochemical pathways. In this scheme two protein kinases are activated by stimulation of the T cell antigen receptor (TCR). These kinases phosphorylate two different chains of the TCR complex. Protein kinase C is responsible for the phosphorylation of the gamma, and, to a lesser extent, the epsilon chains of the receptor on serine residues while the activation of an unidentified tyrosine kinase leads to phosphorylation of the p21 subunit of the receptor on tyrosine residues. In addition to activation by specific antigens, T cells can be functionally activated in vitro by the addition of antibodies that bind either the antigen receptor or the Thy-1 molecule, an entity independent of the receptor. We have used antibodies directed against these molecules and show that they result in the same dual kinase activation observed with antigen stimulation. In addition we have compared the three ligands, antigen, and antibodies directed against the epsilon chain of the TCR or against Thy-1, in terms of how they couple to the two kinase pathways. Activation of phosphatidylinositol breakdown and TCR phosphorylation on serine by all three stimuli are sensitive to cAMP inhibition. In contrast, only antigen-stimulated tyrosine kinase activation is sensitive to cAMP while the two antibody reagents activate the tyrosine kinase in a manner that is entirely insensitive to cAMP inhibition.  相似文献   

11.
The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta.  相似文献   

12.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

13.
Characterization of a novel insulin receptor from stingray liver   总被引:1,自引:0,他引:1  
The insulin receptor from the liver of stingray, a cartilaginous fish, has characteristics which are in marked contrast to those of the mammalian insulin receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cross-linked, affinity-labeled stingray insulin receptor shows an apparent molecular mass of 210 kDa for the intact receptor. Reduction with mercaptoethanol resulted in no alteration in the apparent size of the stingray insulin receptor. Gel filtration studies of Triton X-100 solubilized stingray insulin receptor demonstrated an apparent Stokes radius of 7.6 nm. Ultracentrifugation sucrose gradient studies of cross-linked affinity labeled stingray receptor resulted in determination of a sedimentation coefficient of 13 S. Both of these parameters were greater than simultaneously obtained data for the human insulin receptor (7.2 nm and 11 S, respectively). Unlabeled insulin competed with binding of 125I-insulin and 125I-insulin growth factor (IGF) I with a half-maximal concentration of 1 nM for either. Unlabeled IGF I and II also competed, but were 4-5-fold less potent than insulin. It was found that not only did IGF I bind to the 210-kDa material, but both insulin and IGF I stimulated phosphorylation of a 210-kDa material which was immunoprecipitable by a polyclonal insulin receptor antibody. Elution of this material from the gel followed by hydrolysis and thin layer chromatography demonstrated that the 210-kDa material was specifically phosphorylated on tyrosine only. These data suggest that the insulin receptor from stingray liver is a dimer made up of 2 identical subunits of about 210 kDa size which contain both binding regions and insulin-stimulated tyrosine kinase. Specificity studies suggest that the stingray insulin receptor may represent a phylogenetic position prior to the evolutionary divergence of insulin and the insulin-like growth factors.  相似文献   

14.
The melanotropin (MSH) receptor of mouse B16-F1 melanoma cells was characterized by photoaffinity cross-linking, using a potent alpha-MSH photolabel, [norleucine4, D-phenylalanine7, 1'-(2-nitro-4-azidophenylsulfenyl)-tryptophan9]-alpha-melanotropin (Naps-MSH). Its monoiodinated form, 125I-Naps-MSH, displayed a approximately 6.5-fold higher biological activity than alpha-MSH. Scatchard analysis of the saturation curves with 125I-Naps-MSH revealed approximately 20,000 receptors/B16-F1 cell and an apparent KD of approximately 0.3 nM. Analysis of the cross-linked MSH receptor by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that a photolabeled band of approximately 45 kDa occurs in B16-F1, B16-F10, and Cloudman S91 mouse melanoma, as well as in human D10 and 205 melanoma but not in non-melanoma cells. The labeled 45-kDa protein had an isoelectric point of 4.5-4.9 as determined by two-dimensional gel electrophoresis. Treatment of the labeled 45-kDa protein of B16-F1 cell membranes by neuraminidase shifted the band to approximately 42 kDa. A similar band of about 42 kDa was also observed after receptor labeling of B16-W4 cells, a cell line with a decreased number of terminal N-linked neuraminyl residues. These results indicate that the labeled 45-kDa glycoprotein contains terminal sialic acid residues, explaining the low pI of this protein, and that it is characteristic for melanoma cells and hence part of the MSH receptor.  相似文献   

15.
The antigen receptor complex on murine MHC class II-restricted T cells consists of disulfide-linked alpha and beta chains noncovalently associated with four additional polypeptides, two that are endoglycosaminidase F-sensitive, gp26 and gp21, and two that are endoglycosaminidase F-resistant, p25 and p16. We demonstrate here that treatment of murine T cell hybridomas with phorbol 12-myristate 13-acetate results in phosphorylation of p25 and gp21 on serine residues. However, activation of cells by antigen results in the phosphorylation of the gp21 chain and a heretofore unidentified 21 kd protein. This newly defined polypeptide, p21, is specifically immunoprecipitated with the antigen receptor complex, is endoglycosaminidase F-resistant, and is itself part of a disulfide-linked molecule. Unlike antigen-induced phosphorylation of gp21, which occurs on serine residues, phosphorylation of p21 occurs uniquely on tyrosine residues.  相似文献   

16.
Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.  相似文献   

17.
We have investigated a tyrosine kinase activity from Pseudomonas solanacearum, an economically important plant pathogen. In vitro incubation of membrane fractions with [gamma-32P]ATP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an 85-kDa phosphoprotein. Phosphorylation of this protein on tyrosine residues was demonstrated by phosphoamino acid analysis of base hydrolysis products and by immunoanalysis of Western blots (immunoblots) with antiphosphotyrosine monoclonal antibody. In vitro incubation of membranes with ATP was not required for recognition by the antibody, indicating that the 85-kDa protein is phosphorylated in vivo. These results demonstrate that membranes from P. solanacearum exhibit a tyrosine kinase activity toward an endogenous membrane protein. This bacterium provides an opportunity to study the structure and function of a prokaryotic tyrosine kinase.  相似文献   

18.
Because many growth factor receptors are ligand-activated tyrosine protein kinases, the possibility that growth hormone (GH), a hormone implicated in human growth, promotes tyrosyl phosphorylation of its receptor was investigated. 125I-Labeled human GH was covalently cross-linked to receptors in intact 3T3-F442A fibroblasts, a cell line which differentiates into adipocytes in response to GH. The cross-linked cells were solubilized and passed over a column of phosphotyrosyl binding antibody immobilized on protein A-Sepharose. Immunoadsorbed proteins were eluted with a hapten (p-nitrophenyl phosphate) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The eluate from the antibody column contained an Mr 134,000 125I-GH-receptor complex. A similar result was obtained when the adipocyte form of 3T3-F442A cells was used in place of the fibroblast form. O-Phosphotyrosine prevented 125I-GH-receptor complexes from binding to the antibody column, whereas O-phosphoserine and O-phosphothreonine did not. In studies of GH-promoted phosphorylation in 3T3-F442A fibroblasts labeled metabolically with [32P]Pi, GH was shown to stimulate formation of a 32P-labeled protein which bound to immobilized phosphotyrosyl binding antibodies. The molecular weight of 114,000 obtained for this protein is similar to that expected for non-cross-linked GH receptor. The Mr 114,000 phosphorylated protein could be immunoprecipitated with anti-GH antibody, indicating that GH remained noncovalently bound to this protein during absorption to and elution from the immobilized phosphotyrosyl binding antibody. Phosphoamino acid analysis after both limited acid hydrolysis and extensive base hydrolysis of the Mr 114,000 phosphoprotein confirmed the presence of phosphotyrosyl residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In previous studies we demonstrated that the antigen receptor complex on murine T cells is phosphorylated after antigen or mitogen activation. After the clonotypic structures bind antigen, the invariant subunits or CD3 molecules are the target of dual kinase activation. The antigen receptor CD3-gamma-chain subunit is phosphorylated on serine residues by activated protein kinase C and the p21 subunit is phosphorylated by a tyrosine kinase. Herein we demonstrate that another mechanism of receptor activation by the stimulatory monoclonal antibody 145-2C11, which binds the CD3-epsilon chain, results in a similar pattern of kinase activation and receptor phosphorylation.  相似文献   

20.
Antiphosphotyrosine immunoblots were used to characterize tyrosine phosphorylated proteins after stimulation of the human TCR. Increased tyrosine phosphorylation was evident on at least 12 substrates within 2 min after ligation of the TCR with mAb. Analysis of the time course for increased tyrosine phosphorylation revealed distinct patterns. Increased phosphorylation of 135-kDa and 100-kDa substrates was evident within 5 s, whereas increased phosphorylation of the TCR-zeta-chain required several minutes after treatment with anti-CD3 mAb. This rapid cellular tyrosine phosphorylation occurred independent of the cell cycle, as it occurred after stimulation of resting T cells, T cell blasts, and the Jurkat T cell leukemia line. When the TCR complex was cross-linked together with the CD4 receptor by heteroconjugate anti-CD3/CD4 mAb, an increased magnitude of tyrosine phosphorylation occurred, although no new substrates could be detected. The increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates was specific in that anti-HLA class I, anti-CD6, anti-CD7, and anti-CD28 antibodies did not cause increased tyrosine phosphorylation. Anti-CD4 stimulation of resting T cells did not cause increased tyrosine phosphorylation of pp100 and pp135, suggesting that the CD4-associated kinase, lck, does not account for the tyrosine phosphorylation observed after TCR stimulation. Similarly, pharmacologic treatment of cells with phorbol ester and calcium ionophore did not cause increased tyrosine phosphorylation of these substrates, indicating that activation of protein kinase C or phospholipase C does not account for these early increases in tyrosine phosphorylation. The time of onset of pp100 phosphorylation, and the magnitude of phosphorylation correlated with the magnitude of calcium mobilization when cells were stimulated with different forms of TCR stimulation. When cells were labeled with [3H]myoinositol and analyzed after stimulation by anti-CD3 mAb, increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates preceded the activation of phospholipase C, as measured by the appearance of inositol 1,4,5-trisphosphate. This occurred in both T cell blasts and in the Jurkat T cell line. Thus, these findings show that increased tyrosine phosphorylation is the earliest yet detected signal observed after ligation of the TCR complex, and furthermore suggest that tyrosine phosphorylation might link the TCR to the phosphatidylinositolbisphosphate hydrolysis signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号