首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multimeric scaffolding protein gephyrin forms post-synaptic clusters at inhibitory sites, thereby anchoring inhibitory glycine (GlyR) and subsets of γ-aminobutyric acid type A (GABAA) receptors. Gephyrin is composed of three domains, the conserved N-terminal G- and C-terminal E-domain, connected by the central (C-) domain. In this study we investigated the oligomerization, folding and stability, GlyR β-loop binding, and phosphorylation of three gephyrin splice variants (Geph, Geph-C3, Geph-C4) after expression and purification from insect cells (Sf9). In contrast to Escherichia coli-derived trimeric gephyrin, we found that Sf9 gephyrins form hexamers as basic oligomeric form. In the case of Geph and Geph-C4, also high-oligomeric forms (~900 kDa) were isolated. Partial proteolysis revealed a compact folding of the Gephyrin G and C domain in one complex, whereas a much lower stability for the E domain was found. After GlyR β-loop binding, the stability of the E domain increased in Geph and Geph-C4 significantly. In contrast, the E domain in Geph-C3 is less stable and binds the GlyR β-loop with one order of magnitude lower affinity. Finally, we identified 18 novel phosphorylation sites in gephyrin, of which all except one are located within the C domain. We propose two models for the domain arrangement in hexameric gephyrin based on the oligomerization of either the E or C domains, with the latter being crucial for the regulation of gephyrin clustering.  相似文献   

2.
Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor. The glycine binding site of this subtype of ionotropic glutamate receptors is formed by the S1 and S2 regions of the NR1 subunit. Here, different S1S2 fusion proteins were expressed and purified from Escherichia coli cultures, and refolding protocols were established allowing the production of 30 mg of soluble S1S2 fusion protein from 1 liter bacterial culture. After affinity purification and renaturation, two of the fusion proteins (S1S2 and S1S2-V1) bound the competitive glycine site antagonist [3H]MDL105,519 with K(d) values of 9.35 and 3.9 nM, respectively. In contrast, with three other constructs (S1S2M, S1S2-V2, and -V3) saturable ligand binding could not be obtained. These results redefine the S1S2 domains required for high-affinity glycine binding. Furthermore, our high-affinity binding proteins may be used for the large-scale production of the glycine binding core region for future structural studies.  相似文献   

3.
In this study, we have further delineated the domains of the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine co-agonist binding site. Taking an iterative approach, we have constructed truncation mutants of the NR1 subunit, transiently expressed them in HEK-293 cells, and determined the binding of the glycine site antagonist [3H]L-689,560. Amino acids 380-811 were sufficient to form a glycine binding site with affinities for [3H]L-689,560 and glycine that were not significantly different from wild-type NR1. More extensive deletions, from either the amino- or the carboxy-terminal end, resulted in loss of ligand binding. Additional constructs were made starting from amino acids 380-843 of NR1, replacing the transmembrane (TMI-TMIII) domain with intervening linker sequences while retaining the TMIV domain so as to anchor the polypeptide to the membrane. Although robust amounts of polypeptides were synthesised by transfected cells, only low levels of [3H]L-689,560 binding sites could be detected. This suggests that only a small proportion of the synthesised polypeptide folds in the appropriate manner so as to form a ligand binding site. These data indicate that although it is possible to reduce the glycine binding site to minimal so-called S1 and S2 domains, efficient folding of the polypeptide so as to form a ligand binding site may require sequences within the TMI-TMIII domain.  相似文献   

4.
Gephyrin is an essential and instructive molecule for the formation of inhibitory synapses. Gephyrin binds directly to the large cytoplasmic loop located between transmembrane helices three and four of the beta-subunit of the glycine receptor and to microtubules, thus promoting glycine receptor (GlyR) anchoring to the cytoskeleton and clustering in the postsynaptic membrane. Besides its structural role, gephyrin is involved in the biosynthesis of the molybdenum cofactor that is essential for all molybdenum-dependent enzymes in mammals. Gephyrin can be divided into an N-terminal trimeric G domain and a C-terminal E domain, which are connected by a central linker region. Here we have studied the in vitro interaction of gephyrin and its domains with the large cytoplasmic loop of the GlyR beta-sub-unit (GlyRbeta-loop). Binding of gephyrin to the GlyR is exclusively mediated by the E domain, and the binding site was mapped to one of its sub-domains (residues 496-654). By using isothermal titration calorimetry, a high affinity (K(d) = 0.2-0.4 microm) and low affinity (K(d) = 11-30 microm) binding site for the GlyRbeta-loop was found on holo-gephyrin and the E domain, respectively, with a binding stoichiometry of two GlyRbeta-loops per E domain in both cases. Binding of the GlyRbeta-loop does not change the oligomeric state of either full-length gephyrin or the isolated E domain.  相似文献   

5.
Chorea-acanthocytosis (ChAc) is a hereditary neurodegenerative disorder caused by loss of function mutations in the VPS13A gene encoding chorein. Recently, using a gene-targeting technique to delete exons 60-61, we produced a ChAc-model mouse that corresponds to a human disease mutation. In this study, a comparative microarray analysis of gene expression in the striatum revealed an increased level of gephyrin gene expression in the ChAc-model mice compared with wild type mice. Since gephyrin is known as a GABA(A) receptor-anchoring protein, we compared the protein-level expression and localization of gephyrin and the GABA(A) receptor alpha1 (GABRA1) and gamma2 (GABRG2) subunits. Gephyrin and GABRG2 immunoreactivities in the striatum and hippocampus of the ChAc-model mice were significantly higher than those in the wild types. Our results suggest that chorein functional loss may lead to a compensatory upregulation of gephyrin and GABRG2 in the pathologic condition in ChAc.  相似文献   

6.
Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.  相似文献   

7.
This article describes a novel method to access functional interactions of two defective mutant receptors. As a model, luteinizing hormone receptor, a G-protein-coupled receptor, was used by coexpressing two different mutants, one defective in hormone binding and the other defective in signal generation. When these two mutants were coexpressed in a cell, the cell responded to the hormone and induced the hormone action, indicating the interaction of the two receptors and rescue of the activity. The luteinizing hormone receptor consists of a 350-amino-acid extracellular N-terminal domain (exodomain), followed by seven transmembrane domains and connecting loops (endodomain). Hormone binds to the exodomain, whereas hormone signals are generated in the endodomain. Here, we show that binding of hormone to one receptor can activate adenylyl cyclase through its transmembrane bundle, intramolecular activation (cis-activation), as well as intermolecular activation (trans-activation) through the transmembrane bundle of an adjacent receptor, without forming a stable receptor dimer. Our observations provide new insights into the mechanism of receptor activation mechanisms, and have implications for the treatment of inherited disorders of glycoprotein hormone receptors.  相似文献   

8.
Inhibitory glycine receptors are most abundant in spinal cord and brainstem, and glycinergic synapses have a well-established role in the regulation of locomotor behavior. Little is known about the function of glycine receptors in cortex and hippocampus, where GABA plays a dominant role in synaptic inhibition. Therefore, we have investigated tissue and cellular expression of glycine receptor alpha-subunits. Western blot and immunohistochemical analyses reveal the presence of glycine receptors in hippocampal tissue. Immunocytochemical experiments in hippocampal cultures show prominent cellular expression of glycine receptors in pyramidal neurons and GAD-positive interneurons similar to the calcium-binding protein VILIP-1 with widespread hippocampal distribution. On the subcellular level we found co-staining of GlyR and the presynaptic marker synapsin I. Furthermore, co-staining with GAD at synaptic terminals indicated partial co-localization of GABA- and glycine receptors.  相似文献   

9.
Glycine and glycine receptors (GlyRs) were analyzed immunocytochemically in the retina of the frog Rana ridibunda. Glycine was localized to somata of glycinergic amacrine and interplexiform cells. Approximately 50% of the cells in the amacrine cell layer were found to be glycinergic. GlyRs of the inner plexiform layer (IPL) were localized to brightly fluorescent puncta, probably representing postsynaptic clusters of GlyRs. GlyR clusters were not evenly distributed across the IPL but showed patterns of stratification specific for the various GlyR subunits. Clusters containing the 1 subunit formed four narrow strata within the IPL. Clusters containing the 3 subunit were more abundant and covered the whole IPL, with a band of higher density in stratum 3. Clusters of GlyRs were also observed in the outer plexiform layer. Thus, several isoforms of synaptic GlyRs involved with different synapses and inhibitory circuits are present in the frog retina.This work was supported by the Deutsche Forschungsgemeinschaft SFB269/B4  相似文献   

10.
We employed random mutagenesis to determine the region of the initial unfolding of hyper-alkaline-sensitive subtilisin, ALP I, that precedes the denaturation of the entire protein under highly alkaline conditions. This region comprises two α-helices and a calcium-binding loop. Stabilization of the region caused the stabilization of the entire protein at a high alkaline pH 12. The alkaline stability of this region was most effectively improved by hydrophobic interactions, followed by ionic interactions with Arg residues. The effect of mutations on the improvement was different with regard to the alkaline stability and thermostability. This indicated that different strategies were necessary to improve the alkaline stability and thermostability of the protein.  相似文献   

11.
We have previously identified two G protein-linked acetylcholine receptors (GARs), GAR-1 and GAR-3, in the nematode Caenorhabditis elegans. Whereas GAR-3 is a homologue of muscarinic acetylcholine receptors (mAChRs), GAR-1 is similar to but pharmacologically distinct from mAChRs. In the current work we isolated a new type of GAR using C. elegans genome sequence information. This receptor, named GAR-2, consists of 614 amino acid residues and has seven putative transmembrane domains. Database searches indicate that GAR-2 is most similar to GAR-1 and closely related to GAR-3/mAChRs. The overall amino acid sequence identities to GAR-1 and GAR-3 are approximately 32 and approximately 23%, respectively. When GAR-2 was coexpressed with the G protein-activated inwardly rectifying K(+) (GIRK1) channel in XENOPUS: oocytes, acetylcholine was able to evoke the GIRK current in a dose-dependent fashion. Oxotremorine, a classical muscarinic agonist, had little effect on the receptor, indicating that GAR-2 is pharmacologically different from mAChRs but rather similar to GAR-1. GAR-2 differs from GAR-1, however, in that it showed virtually no response to muscarinic antagonists such as atropine, scopolamine, and pirenzepine. Expression studies using green fluorescent protein reporter gene fusion revealed that GAR-2 is expressed in a subset of C. elegans neurons, distinct from those expressing GAR-1. Together with our previous reports, this study demonstrates that diverse types of GARs are present in C. elegans.  相似文献   

12.
DYNLL1, the smallest dynein light chain, interacts with different cargos facilitating their cellular transport. Usually the sequence recognized in the targets is homologous to the GIQVD or the KXTQT motifs with a glutamine that is important for binding. Here we add two new examples of DYNLL1 targets that can be classified into these two groups: ASFV p54 and gephyrin. Using NMR we demonstrate the direct interaction between DYNLL1 and two peptides derived from their interacting sequences. We model the structure of both complexes and show that the overall binding mode is preserved as in other complexes despite differences at the residue-specific interactions.

Structured summary

MINT-8058152:DYNLL1 (uniprotkb:P63167) and gephyrin (uniprotkb:Q9NQX3) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-8058141:DYNLL1 (uniprotkb:P63167) and p54 (uniprotkb:Q4TWM1) bind (MI:0407) by nuclear magnetic resonance (MI:0077)  相似文献   

13.
The immunophilin, FK506-binding protein (FKBP12), is an essential component of the ryanodine receptor channel complex of skeletal muscle (RyR1) and modulates intracellular calcium signaling from the nedoplasmic reticulum. The cardiac muscle RyR isoform (RyR2) specifically associates with a distinct FKBP isoform, FKBP12.6. Previous studies have led to the proposal that the central domain of RyR1 exclusively mediates the interaction with FKBP12. To characterize the topography of the FKBP 12.6 binding site on the human cardiac RyR2, we have applied complementary protein-protein interaction methods using both in vivo yeast two-hybrid analysis and in vitro immunoprecipitation experiments. Our results indicate an absence of interaction of FKBP12/12.6 with fragments containin the central domain of either RyR1, RyR2, or RyR3. Furthermore, no interaction was detected between FKBP12.6 with a series of overlapping fragments encompassing the entire RyR2, either individually or in multiple combination. We also found that a distinct, alternatively spliced variant of FKBP12.6 was unable to interact with RyR. In contrast, we successfully demonstrated a robust association between the cytoplasmic domain of transforming growth factor-β receptor type I and both FKBP12 and FKBP12.6 in parallel positive control experiments, as well as between native RyR2 and FKBP12.6. These results suggest that the specific interaction of FKBP12.6 with RyR2, and generally of FKBPs with any RyR isoform, is not readily reconstituted by peptide fragments corresponding to central RyR domains. Further structural analysis will be necessary to unravel this intricate signaling system and the current model of FKBP-12-RyR interaction via a single, central RyR, epitope may therefore require revision.  相似文献   

14.
Most ligand-gated channels exhibit desensitization, which is the progressive fading of ionic current in the prolonged presence of agonist. This process involves conformational changes that close the channel despite continued agonist binding. Despite the physiological and pathological importance of desensitization, little is known about the conformational changes that underlie this process in any Cys-loop ion channel receptor. Here we employed voltage clamp fluorometry to identify conformational changes that occur with a similar time course as the current desensitization rate in both slow- and fast-desensitizing α1 glycine receptor chloride channels. Voltage clamp fluorometry provides a direct indication of conformational changes that occur in the immediate vicinity of residues labeled with environmentally sensitive fluorophores. We compared the rates of current desensitization and fluorescence changes at nine labeled extracellular sites in both wild type slow-desensitizing and mutated (A248L) fast-desensitizing glycine receptors. As labels attached to three sites at the interface between the ligand binding domain and transmembrane domain reported fluorescence responses that changed in parallel with the current desensitization rate, we concluded that they experienced local conformational changes associated with desensitization. These labeled sites included A52C in loop 2, Q219C in the pre-M1 domain, and M227C in the M1 domain. Activation and desensitization were accompanied by physically distinct conformational changes at each labeled site. Because activation is mediated by a specific reorganization of molecular interactions at the extracellular-transmembrane domain interface, we propose that desensitization is mediated by a distinct set of conformational changes that prevents this reorganization from occurring, thereby favoring channel closure.  相似文献   

15.
Responses to glycine, a major inhibitory neurotransmitter within the nervous system, are mediated by glycine receptors (GlyRs). Here, we report the cloning and analysis of a novel splicing variant of the GlyRalpha1 subunit. This variant, named GlyRalpha1del, has a truncated cytoplasmic region between transmembrane domains (TM)3 and TM4, and compared to other variants, the truncation is contributed by a different acceptor site in exon 9. We transfected GlyRalpha1 or GlyRalpha1del into HEK293 cells, and then examined the glycine-activated currents using a whole-cell patch-clamp recording technique. Maximal currents and current-voltage relationships showed no clear difference between GlyRalpha1del and GlyRalpha1. Moreover, dose-response curves indicated that the EC50 values for glycine differed significantly between the two GlyRalpha1 derivatives, although their Hill coefficients were similar. When present with other isoforms, GlyRalpha1del might alter the response to glycine or to other agonists, as this variant expands the potential heterogeneity among glycine receptors.  相似文献   

16.
In this study, we describe a novel method for the detection of conformational changes in proteins, which is predicated on the reconstitution of split green fluorescent protein (GFP). We employed fluorescence complementation assays for the monitoring of the conformationally altered proteins. In particular, we used maltose binding protein (MBP) as a model protein, as MBP undergoes a characteristic hinge-twist movement upon substrate binding. The common feature of this approach is that GFP, as a reporter protein, splits into two non-fluorescent fragments, which are genetically fused to the N- and C-termini of MBP. Upon binding to maltose, the chromophores move closer together, resulting in the generation of fluorescence. This split GFP method also involves the reconstitution of GFP, which is determined via observations of the degree to which fluorescence intensity is restored. As a result, reconstituted GFP has been observed to generate fluorescence upon maltose binding in vitro, thereby allowing for the direct detection of changes in fluorescence intensity in response to maltose, in a concentration- and time-dependent fashion. Our findings showed that the fluorescence complementation assay can be used to monitor the conformational alterations of a target protein, and this ability may prove useful in a number of scientific and medical applications.  相似文献   

17.
Insulin-like growth factor 1 receptor (IGF-1R) plays an important role in cell growth and malignant transformation. To investigate IGF-1R-dependent signaling events and its effects on apoptosis induction and cellular proliferation, we generated a constitutively active, ligand-independent IGF-1R variant. We fused the cytoplasmic domain of the IGF-1R to the extracellular and transmembrane domains of the oncogenic ErbB2 receptor (ErbB2V→E/IGF-1). A fusion protein in which the wild-type sequence of the ErbB2 receptor was used, served as a control (ErbB2V/IGF-1R). ErbB2V/IGF-1R, ErbB2V→E/IGF-1R and IGF-1R were stably transfected into interleukin 3 (IL-3)-dependent BaF/3 cells. ErbB2V→E/IGF-1R expressing cells exhibited ligand-independent, constitutive tyrosine phosphorylation of the receptor fusion protein. Constitutively, activated ErbB2V→E/IGF-1R conferred IL-3 independence for growth and survival to the transfected BaF/3 cells. Constitutive activation of the IGF-1R results in cellular growth and protection against apoptosis upon IL-3 withdrawal in BaF/3 cells.  相似文献   

18.
19.
The ins and outs of leptin receptor activation   总被引:10,自引:0,他引:10  
  相似文献   

20.
Ab initio quantum chemical calculations of the benzene dimer, benzene dimer 5,7-chlorination of one aromatic ring, 3-hydroxykynurenine, and kynurenic acid molecules located above the Phe484 aromatic ring of a fragment of the receptor binding site were performed to study the role of stacking interaction in the binding of agonists and antagonists with the glycine binding site of the NR1 subunit of the NMDA receptor. The GAMESS 6.4 software in the 6–31G** basis set with complete optimization of the geometry and with account of electron correlation within the second-order Moller-Plesset perturbation theory was used for all calculations. It was shown that parallel shifted conformations of the benzene dimer were the most favorable in energy. Successive substitution of chlorine atoms for protons of one aromatic ring at positions 7 and 5 led to an increase in the stacking-interaction energy and mutual displacement of aromatic rings. In the case of kynurenic acid and its chlorinated derivatives, which are NMDA receptor antagonists, the increase in the stacking interaction energy further suppressed the ion channel, whereas 3-hydroxykynurenine was neither an agonist nor an antagonist of the glycine site because of steric constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号