首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanisms of plasminogen activation by mammalian plasminogen activators   总被引:4,自引:0,他引:4  
H R Lijnen  D Collen 《Enzyme》1988,40(2-3):90-96
Plasminogen activators convert the proenzyme plasminogen to the active serine protease plasmin by hydrolysis of the Arg560-Val561 peptide bond. Physiological plasminogen activation is however regulated by several additional molecular interactions resulting in fibrin-specific clot lysis. Tissue-type plasminogen activator (t-PA) binds to fibrin and thereby acquires a high affinity for plasminogen, resulting in efficient plasmin generation at the fibrin surface. Single-chain urokinase-type plasminogen activator (scu-PA) activates plasminogen directly but with a catalytic efficiency which is about 20 times lower than that of urokinase. In plasma, however, it is inactive in the absence of fibrin. Chimeric plasminogen activators consisting of the NH2-terminal region of t-PA (containing the fibrin-binding domains) and the COOH-terminal region of scu-PA (containing the active site), combine the mechanisms of fibrin specificity of both plasminogen activators. Combination of t-PA and scu-PA infusion in animal models of thrombosis and in patients with coronary artery thrombosis results in a synergic effect on thrombolysis, allowing a reduction of the therapeutic dose and elimination of side effects on the hemostatic system.  相似文献   

2.
Interaction of plasminogen and fibrin in plasminogen activation   总被引:2,自引:0,他引:2  
Glu1-, Lys77-, miniplasminogens, kringle 1-3, kringle 1-5A, and kringle 1-5R were able to bind with fibrin, while microplasminogen and kringle 4 did not bind significantly. Kringle 1-5A, but not kringle 1-3, effectively inhibited the binding of Glu1-, Lys77-, and miniplasminogens with fibrin. Miniplasminogen also inhibited the binding of Glu1-plasminogen with fibrin. The binding of kringle 1-3 with fibrin was blocked by mini- or Glu1-plasminogen. It is therefore evident that there are two fibrin-binding domains in plasminogen and that the one in kringle 5 is of higher affinity than that in kringle 1-3. CNBr cleavage products of fibrinogen effectively enhanced the activation of Glu1-, Lys77-, or miniplasminogens, but not microplasminogen, by tissue-type plasminogen activator. Kringle 1-5, but not kringle 1-3, dose-dependently inhibited the enhancement by fibrinogen degradation products of Glu1-plasminogen activation by the activator. Lysine and epsilon-aminocaproic acid could inhibit the binding of plasminogens and plasminogen derivatives with fibrin and block the enhancement effect of fibrinogen degradation products on plasminogen activation. The data clearly illustrate that the binding of plasminogen with fibrin, mainly determined by kringle 5, is essential for effective activation by tissue-type plasminogen activator. However, the presence of kringle 1-4 in the plasminogen molecule is required for the full enhancing effect since the kcat/Km of miniplasminogen activation in the presence of fibrinogen degradation products was 8.2 microM-1 min-1 which is significantly less than 52.0 microM-1 min-1 of Glu1-plasminogen.  相似文献   

3.
4.
Placental extracts contain inhibitors of human urinary urokinase. These extracts form a heterogeneous population of complexes with 125I-urokinase that are recognizable by changes in gel filtration profile and mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment with reducing agents eliminated the size heterogeneity without loss of activity, thereby allowing the placental inhibitor to be purified. Active inhibitor has been isolated in apparently homogeneous form after an eight-step procedure that included salt extraction, ammonium sulfate fractionation, column chromatography on CM-cellulose, DEAE-Sepharose, and hydroxylapatite, chromatofocusing, preparative gel electrophoresis, and hydrophobic chromatography. The purified inhibitor has Mr = 47,000. The inhibitor is relatively specific for plasminogen activators since it does not inhibit the action of plasmin, factor XIIa, plasma kallikrein, or thrombin. The inhibitor forms complexes with 1:1 stoichiometry that block the active sites of urokinase (but not prourokinase) and both one- and two-chain forms of tissue plasminogen activator. The stability of these complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggest that they are based on covalently bonded structures. Although both types of plasminogen activator are inhibited, the rate of interaction is significantly faster with urokinase, tissue plasminogen activator being inhibited less efficiently. The complexes formed can be dissociated by mild alkali or hydroxylamine, thereby regenerating both enzymes and inhibitor at their original molecular weights. The results suggest that the complexes are stabilized by ester-like bonds; these might involve the hydroxyl of serine at the active site of the proteases and a carboxyl group in the inhibitor.  相似文献   

5.
6.
The amidolytic plasmin activity of a mixture of tissue plasminogen activator (tPA) and plasminogen is enhanced by heparin at therapeutic concentrations. Heparin also increases the activity in mixtures of urokinase-type plasminogen activator (uPA) and plasminogen but has no effect on streptokinase or plasmin. Direct analyses of plasminogen activation by polyacrylamide gel electrophoresis demonstrate that heparin increases the activation of plasminogen by both tPA and uPA. Binding studies show that heparin binds to various components of the fibrinolytic system, with tight binding demonstrable with tPA, uPA, and Lys-plasminogen. The stimulation of tPA activity by fibrin, however, is diminished by heparin. The ability of heparin to promote plasmin generation is destroyed by incubation of the heparin with heparinase, whereas incubation with chondroitinase ABC or AC has no effect. Also, stimulation of plasmin formation is not observed with dextran sulfate or chondroitin sulfate A, B, or C. Analyses of heparin fractions after separation on columns of antithrombin III-Sepharose suggest that both the high-affinity and the low-affinity fractions, which have dramatically different anticoagulant activity, have similar activity toward the fibrinolytic components.  相似文献   

7.
8.
R Machovich  W G Owen 《Enzyme》1988,40(2-3):109-112
A component extracted from endothelium and partially purified has been found to have a capacity to enhance the rate of plasminogen activation by tissue-type plasminogen activator. The mechanism of action of this cofactor differs from that of others, such as fibrin.  相似文献   

9.
10.
11.
The kinetics of the activation of plasminogen by tissue-type plasminogen activator were studied in the presence and the absence of CNBr-digested fibrinogen as a soluble cofactor. Michaelis-Menten kinetics applied and the kinetic parameters obtained were very similar to those previously reported for the activation in the presence of solid phase fibrin (Hoylaerts, M., Rijken, D. C., Lijnen, H. R., and Collen, D. (1982) J. Biol. Chem. 257, 2912-2919). The affinity of the enzyme for plasminogen dramatically increases in the presence of the soluble cofactor while the catalytic rate constant does not change significantly (KM drops from 83 to 0.18 microM and kcat increases from 0.07 to 0.28 s-1 for tissue-type plasminogen activator of melanoma origin). Fragments containing the lysine-binding sites of plasminogen compete with plasminogen for interaction with CNBr-digested fibrinogen. The dissociation constant of this interaction was found to be 4.5 microM for the high affinity lysine-binding site. No difference was found in the kinetic parameters for the activation of plasminogen by either tissue-type plasminogen activator of melanoma origin or by glycosylated forms of tissue-type plasminogen activator obtained by recombinant DNA technology. The present findings obtained in a homogenous liquid milieu support the previously proposed mechanism of the activation of plasminogen by tissue-type plasminogen activator in the presence of fibrin. This mechanism involves binding of both tissue-type plasminogen activator and plasminogen to fibrin.  相似文献   

12.
The kinetics of activation of Lys-plasminogen (Lys-77-Asn-790) and miniplasminogen (Val-442-Asn-790) catalysed by low-molecular-weight urokinase (LMW-urokinase) was investigated in the presence and absence of ligands that bind to the AH-site of the plasminogens. 6-Aminohexanoic acid and alpha-N-acetyl-L-lysine methyl ester (AcLysMe) were used. Saturation of the AH-sites of the plasminogens result in similar, but rather small positive effects on the kinetics of activation of the two plasminogens. Michaelis constants decrease approx. 2-fold and second-order rate constants (kc/Km)Pg increase approx. 1.2-fold. Michaelis constants (KPg values) were obtained using a new approach; the values were determined from the competing effects of the plasminogens on urokinase-catalysed hydrolysis of a synthetic substrate. In the pH range 7.4-8.0, only minor alterations of the values of the kinetic parameters are observed. At 25 degrees C, values of (kc/Km)Pg are approx. 3-fold less than the value at 37 degrees C, whereas KPg is not changed. We conclude that kc/Km values are approx. 10(5) M-1.s-1 and that KPg values are approx. 40 microM of urokinase-catalysed conversions of Lys- and miniplasminogen to their respective plasmins.  相似文献   

13.
Equations for the time-dependent concentrations of all species involved in the general mechanism of human plasminogen activation proposed by Wohlet al. (J. biol. Chem. 255, 2005–2013, 1980) have been derived. These equations are valid for the whole course of the reaction: for both the transient phase and the steady state. In addition, we compare our results with the ones obtained by the above-mentioned authors for the steady state assuming rapid equilibrium conditions. Finally, we propose a method for the determination of all velocity constants.  相似文献   

14.
15.
Activation of the Hageman factor-prekallikrein system in the whole human blood plasma is studied as affected by organic silica (aerosils) with anionic and cationic properties. Positive- and negative-charged aerosils are shown to possess the same ability to activate prekallikrein. Activity of prekallikrein was manifested in hydrolysis of the chromogenic substrate--Benz-Pro-Phen-Arg-paranitroanilide . HCl, kininogen and protamine sulphate formed by kallikrein. The data permit supposing that optimal activation of the Hageman factor requires the polar (but not ionic) groups with hydrophilic properties on activating surfaces. Plasminogen under contact activation, in contrast to prekallikrein is activated only in the diluted plasma (pH 4.8), and not completely. Possible mechanisms of the contact activation and interaction of the Hageman factor, prekallikrein and high-molecular kininogen in this process are discussed.  相似文献   

16.
Lipoprotein a [Lp(a)] inhibits human plasminogen (Pg) conversion to plasmin (Pm) by streptokinase- (SK-) mediated activation. Kinetic and binding studies indicate that Lp(a) inhibits Pg activation by competitive and uncompetitive inhibition. Lp(a) competes with Pg for SK and forms a stable complex. Lp(a) does not, however, inhibit Pg activation by the proteolytic SK-Pm complex. The SK-Pg and SK-Pg(act) intermediate complexes are possible targets of the Lp(a) uncompetitive inhibition. The competitive inhibition constant (Kic) is 45 nM or 14 mg/dL, and the uncompetitive inhibition constant (Kiu) is 140 nM or 42 mg/dL, corresponding to physiologic and pathophysiologic Lp(a) concentrations, respectively.  相似文献   

17.
Plasminogen preparation from donor blood and fibrinolytically active blood plasma from humans after sudden death were obtained using affinity chromatography on Lysin-sepharose 4B. The plasminogen preparation from donor blood was shown to be highly purified native plasminogen (Glu-plasminogen). The preparation containing activated plasminogen (Lys-plasminogen), plasmin, plasminogen activator, alpha 2-macroglobulin, alpha 1-antitrypsin, fibrin/fibrinogen was obtained from the blood plasma of humans after sudden death. The appearance of proteins lacking biological specificity to lysin-sepharose in the plasminogen preparation shows the ability of activated plasminogen and plasmin to form complexes with these proteins and demonstrates the retention of the functional activity in lysin-binding regions on their molecules. Monospecific sera to the isolated preparations were obtained, demonstrating the presence of the same immunochemical determinants in native and activated plasminogen.  相似文献   

18.
Reciprocal activation of prourokinase (pro-u-PA) and plasminogen is an important mechanism in the initiation and propagation of local fibrinolytic activity. We found that glucosyldiacylglycerol (GDG) enhanced the reciprocal activation by 1.5- to 2-fold at 0.7-16 microM, accompanying increased conversions of both zymogens to active two-chain forms. The reciprocal activation system consists of (i) plasminogen activation by pro-u-PA to form plasmin, (ii) pro-u-PA activation by the resulting plasmin to form two-chain u-PA (tcu-PA), and (iii) plasminogen activation by the resulting tcu-PA. Whereas GDG minimally affected steps (ii) and (iii) in isolated systems, it markedly enhanced step (i) in the absence of the conversion of pro-u-PA to tcu-PA. GDG significantly increased the intrinsic fluorescence of pro-u-PA (6.7%), but not that of tcu-PA or plasminogen. The large change in intrinsic fluorescence suggests that GDG selectively affects pro-u-PA to alter its conformation, and this mechanism may account for enhancement of its intrinsic plasminogen activator activity.  相似文献   

19.
The activation by staphylokinase of human plasminogen.   总被引:1,自引:0,他引:1  
The activation of human plasminogen by a highly purified staphylokinase was investigated using casein or an active site titrant (p-nitrophenyl-p-guanidinobenzoate, NPGB) as a substrate. The reaction rate was time dependent, showing a pronounced lag period with either substrate. Saturation curve estimated from the caseinolytic assay was sigmoid, but changed to quasi-hyperbolic in the presence of pre-formed human plasmin. With NPGB, the extent of plasminogen conversion into esterolytic plasmin was directly proportional to staphylokinase concentration, and the saturation point was reached when the molar concentration of staphylokinase equaled that of plasminogen. It is concluded that staphylokinase acts stoichiometrically, forms an equimolar complex with plasminogen, and thus is not an enzyme but a modifier. Staphylokinase-activated plasminogen exhibits properties of a hysteretic enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号