首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ampullate silk gland of the spider, Araneus sericatus, produces the silk fiber for the scaffolding of the web. The fine structure of the various parts of the gland is described. The distal portion of the duct consist of a tube of epithelial cells which appear to secrete a substance which forms the tunica intima of the duct wall. At the proximal end of the duct there is a region of secretory cells. The epithelium of the sac portion contains five morphologically distinct types of granules. The bulk of the synthesis of silk occurs in the tail of the gland, and in this region only a single type of secretory droplet is seen in the epithelium. Protein synthesis can be stimulated by the injection of 1 mg/kg acetylcholine into the body fluids. 10 min after injection, much of the protein stored in the cytoplasm of the epithelial cells has been secreted into the lumen. 20 min after stimulation, the ergastoplasmic sacs form large whorls in the cytoplasm. Protein, similar in electron-opacity to protein found in the lumen, begins to form in that portion of the cytoplasm which is enclosed by the whorls. The limiting membrane of these droplets is formed by ergastoplasmic membranes which lose their ribosomes. No Golgi material has been found in these cells. Protein appears to be manufactured in the cytoplasm of the tail cells in a form which is ready for secretion.  相似文献   

2.
Casem ML  Tran LP  Moore AM 《Tissue & cell》2002,34(6):427-436
Silk production in the spider occurs within specialized glands that are capable of the synthesis of large fibrous proteins and the post-translational processing of those proteins to form an insoluble fiber. The major ampullate gland of Latrodectus hesperus (black widow) is similar in morphology to those found in the Araneid spiders. The tail domain of this gland is highly protein synthetic, giving rise to a core, fibrous protein product. In addition to a storage function, the ampulla region also synthesizes and exports an electron dense material that appears to form a 'coat' surrounding the silk generated within the tail. The duct of the gland consists of at least two distinct cell types: one type contains 'honeycomb' vesicles of unknown function, while the other possesses elaborate apical microvilli that may be involved in the reabsorption of water and subsequent dehydration of the silk. As the silk product transits through these various stages of assembly, it can been seen to undergo a condensation or concentration, possibly reflecting the influence of both the shear forces induced by movement into the duct and the dehydration that is thought to occur there.  相似文献   

3.
Although many researches have revealed that liquid phase of silk in the ampulla is turning into the polymerized dragline silk fibers as the feedstock passes through the long duct, the exact mechanism has still been not fully understood. Spider's strongest silk fiber, dragline, is mainly produced in the large ampullate glands, the biggest silk gland in the abdomen with a distinctive yellow color. Morphologically, the duct of large ampullate gland is in its unique S‐shape with 2 loops dividing the entire duct into three limbs. In addition, the diameter of the duct showed radical decrease toward the nozzle of the duct. Therefore, it assumed that the duct is playing a significant role in the entire process of silk production allowing great strength. Here, we present some of the fine structural properties of the large ampullate gland duct in Nephila clavata using various visualizations techniques.  相似文献   

4.
The location and function of the five or six sets of silk glandsof Araneus diadematus (Cl) are discussed. The structure andfunction of the three major parts of the ampullate gland indicatea synthesizing, collecting, and possibly structuring section.Two methods of stimulation of the ampullate gland, namely emptyingthe gland and cholinergic stimulation, are known. In both casesthere is an initial secretory stage followed by rapid synthesisof new protein. The sequence of events following stimulationby both methods is described, based on studies of the incorporationof labeled protein and RNA precursors and on autoradiographicstudies. Characteristic changes occur in the fine structureduring the stimulatory cycle. Several experiments show thatthe spider has information on the amount of silk available toit for use in web-building. A structure which may act as a biologicaltransducer has been located in the ampullate gland.  相似文献   

5.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

6.
The ultrastructural changes in the process of differentiation of the epithelial cells of the golden hamster oviduct during postnatal development were investigated by means of electron microscopy. In the epithelium of the ampulla of the neonatal oviducts, no differentiated ciliated cells or secretory cells were identified. In these undifferentiated cells, free ribosomes were well developed, but rough endoplasmic reticulum (RER) and the Golgi apparatus were undeveloped. Cells undergoing ciliogenesis were first identified at 3.5 days after birth, and some ciliated cells appeared at 4.5 days. In the nonciliated cells, marked changes in the organelles were observed at this time. Subsequently, some nonciliated cells containing well-developed RER and Golgi apparatus were observed at 9.5 to 10.5 days after birth, and a few mature secretory cells were observed at 10.5 days. An increase in secretory granules occurred in the secretory cells at 12.5-15.5 days after birth. Many fully mature ciliated and secretory cells were observed at 15.5 days after birth. After 20.5 days after birth, the epithelium was identical with that of the adult golden hamster. Quantitative data indicated that the differentiation of ciliated cells began earlier and took place over a more extended period of time than did that of the secretory cells in the golden hamster oviduct during postnatal development.  相似文献   

7.
The paired female accessory glands of Phlebotomus perniciosus (Diptera : Psychodidae) were investigated by light microscopy, and by scanning and transmission electron microscopy. These glands undergo morphological and functional changes during oocyte development. After the blood meal, the monostratified glandular epithelium differentiates and starts to secrete. Well-developed rough endoplasmic reticulum, Golgi complexes, and membrane-bounded exocytic vesicles suggest that these secretory cells are involved in protein synthesis. As the secretory cells differentiate, the glandular lumen increases in size and fills with secretory material, consisting of globular granules of different sizes in an amorphous electron-dense matrix. The granules have an electron-translucent core and an electron-dense cortex. The morphological characteristics of the glandular epithelium and the functional role of the glands are discussed in relation to their possible contribution to the reproductive process.  相似文献   

8.
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

9.
The small ampullate glands of the orb-web spider, Nephila clavipes, have been studied and compared to other of the silk producing glands from this organism. They exhibit the same gross morphological features of the other glands. Electrophoretic analyses show that the gland's luminal contents migrate as a single band, while the contents of the secretory epithelium reveal a step-ladder array of peptides in addition to the full size product. Previous studies from our laboratory identified these peptides as products generated by translational pauses. This alternate mode of translation is typical of fibroin synthesis in all the spider glands thus far studied as well as in those of the silkworm. The correlation of the peptides to the process of fibroin synthesis is shown through experimental evidence in this paper. The gradual ultrastructural changes in Golgi vesicles elicited by the fibroin synthesis stimulus can be seen in this paper. The response to stimulation is of a higher magnitude in these glands than in any of those previously analyzed. These studies show the small ampullate glands are a promising and certainly exploitable model system for studies on the synthesis of tissue-specific protein product and its control. J. Exp. Zool. 286:114-119, 2000.  相似文献   

10.
Summary The accessory male reproductive glands of the hairy-nosed wombat, Lasiorhinus latifrons, are a prostate and three pairs of Cowper's glands. Component units of all are branched tubular structures of varying epithelial makeup and secretory content. The prostate has the carrotlike shape and three consecutive regions commonly found in marsupials. The regions differ in their tubular histology and histochemistry: all contain secretory globules in glandular lumina. Cowper's glands A and B are histologically identical except for the absence of interstitial mast cells from gland B: gland C is characterized by narrower tubules and larger epithelial cells. Histochemical tests for protein, carbohydrate and iron indicate that glycogen is a major secretory product of the prostate (largely posterior region), iron is also secreted (mainly posterior region) and a small quantity of acid mucin is produced (mainly central region). Glycogen is a feature also of anterior prostatic glandular epithelium and of the capping cells of the urethral transitional epithelium. Cowper's gland A has considerable protein in its secretion, gland B a neutral glycoprotein and gland C a sialomucin: the latter two also exhibit cytoplasmic glycogen in their secretory cells.  相似文献   

11.
Our observations on whole mounted major ampullate silk glands suggested that the thread is drawn from a hyperbolic die using a pre-orientated lyotropic liquid crystalline feedstock. Polarizing microscopy of the gland''s duct revealed two liquid crystalline optical textures: a curved pattern in the feedstock within the ampulla of the gland and, later in the secretory pathway, the cellular texture previously identified in synthetic nematic liquid crystals. The behaviour of droplet inclusions within the silk feedstock indicated that elongational flow at a low shear rate occurs in the gland''s duct and may be important in producing an axial molecular orientation before the final thread is drawn. Our observations suggested that the structure of the spider''s silk production pathway and the liquid crystalline feedstock are both involved in defining the exceptional mechanical properties of spider dragline silk.  相似文献   

12.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

13.
The genus Oxytate L. Koch, 1878 comprises a homogeneous group of nocturnal crab spiders that have silk apparatuses even though they do not spin webs to trap prey. We examined the microstructure of the silk spinning apparatus of the green crab spider Oxytate striatipes, using field emission scanning electron microscopy. The silk glands of the spider were classified into three types: ampullate, pyriform and aciniform. The spigots of these three types of silk gland occur in both sexes. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets (45 pairs in females and 40 pairs in males), and the aciniform glands feed silk into the median (9–12 pairs in females and 7–10 pairs in males) and the posterior (30 pairs in both sexes) spinnerets. The spigot system of O. striatipes is simpler and more primitive than other wandering spiders: even the female spiders possess neither tubuliform glands for cocoon production nor triad spigots for web‐building.  相似文献   

14.
R A Barbour 《Histochemistry》1981,72(1):133-148
The accessory male reproductive glands of the hairy-nosed wombat, Lasiorhinus latifrons, are a prostate and three pairs of Cowper's glands. Component units of all are branched tubular structures of varying epithelial makeup and secretory content. The prostate has the carrotlike shape and three consecutive regions commonly found in marsupials. The regions differ in their tubular histology and histochemistry: all contain secretory globules in glandular lumina. Cowper's glands A and B are histologically identical except for the absence of interstitial mast cells from gland G: gland C is characterized by narrower tubules and larger epithelial cells. Histochemical tests for protein, carbohydrate and iron indicate that glycogen is a major secretory product of the prostate (largely posterior region), iron is also secreted (mainly posterior region) and a small quantity of acid mucin is produced (mainly central region). Glycogen is a feature also of anterior prostatic glandular epithelium and of the capping cells of the urethral transitional epithelium. Cowper's gland A has considerable protein in its secretion, gland B a neutral glycoprotein and gland C a sialomucin: the latter two also exhibit cytoplasmic glycogen in their secretory cells.  相似文献   

15.
The normal ventral and dorsal prostatic lobes of the young adult Syrian hamster were examined at the light and electron microscopic levels. Each lobe is composed of branched tubular secretory units separated from each other by loose interacinar connective tissue and draining into the urethra. The lumen of each acinus is lined by a simple epithelium composed of columnar secretory cells with occasional small basal cells. The epithelial layer, with the thin underlying lamina propria, forms a mucosa that is often highly folded. The whole acinus is bounded by a thick muscular stroma. In each of the ventral lobes, there are three main ducts, each one formed of tubular branched tributary secretory units. The walls of the secretory acini are moderately folded. Microvilli dominate the lumenal surface of the secretory epithelial cells. The Golgi complex is very extensive and shows dilated cisternae and secretory vesicles and vacuoles of various sizes. Membrane-bounded secretory granules populate the Golgi and apical areas and are released into the acinar lumen by exocytosis. The rough endoplasmic reticulum is dispersed throughout the cytoplasm, except in the region of the Golgi apparatus. In each of the dorsal lobes, there are several main tubular ducts that open into the urethra. Both proximal (ductal) and distal portions of the glandular tree are secretory in nature. Microvilli and cytoplasmic bulges and blebs dominate the lumenal surface of the secretory cells. The cells are also characterized by highly dilated cisternae of rough endoplasmic reticulum. The secretory cells show heterogeneity in the degree of dilation and distribution of rough endoplasmic reticulum, and this heterogeneity may reflect location in the glandular tree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Spider silks have great potential as biomaterials with extraordinary properties. Here, we report the cloning and characterization of the major ampullate silk protein gene from the spider Araneus ventricosus. A cDNA encoding the partial major ampullate silk protein (AvMaSp) was cloned from A. ventricosus. An analysis of the cDNA sequence shows that AvMaSp consists of a 240 amino acid repetitive region and a 99 amino acid C-terminal non-repetitive domain. The peptide motifs that were found in the spider major ampullate silk proteins, (A)n, (GA)n, and (GGX)n, were conserved in the repetitive region of AvMaSp. Phylogenetic analysis further confirmed that AvMaSp belongs to the spider major ampullate spidroin family of proteins. The AvMaSp-R cDNA, which encodes the 240 amino acid repetitive domain, was expressed as a soluble 22 kDa polypeptide in baculovirus-infected insect cells. Recombinant AvMaSp-R was degraded abruptly by trypsin. However, AvMaSp-R was stable at 100 °C for at least 30 min. Additionally, the AvMaSp-R was stable at pH values from 2 to 12 for at least 1 h. Taken together, our findings describe the molecular structure and biochemical properties of the A. ventricosus major ampullate silk protein and demonstrate its potential as a biomaterial.  相似文献   

17.
The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within a species as exemplified by the major ampullate spidroin 1 gene of Nephila clavipes. Due to limited numbers of individuals screened to date little is known about the extent of these heterogeneities and how they are finally manifested in the proteins. Using expanded sample sizes, we show that sequence variations expressed as deletions or insertions of tri-nucleotides lead to different sized and structured repetitive units throughout a silk protein. Moreover, major ampullate spidroins 1 can quite dramatically differ in their overall lengths; however, extreme variants do not spread widely in a spider population. This suggests that a certain size range stabilized by purifying selection is important for spidroin 1 gene integrity and protein function. More than one locus for spidroin 1 genes possibly exist within one individual genome, which are homogenized in size, are differentially expressed and give a spider a certain degree of adaptation on silk’s composition and properties. Such mechanisms are shared to a lesser extent by the second major ampullate spidroin gene.  相似文献   

18.
Summary Previous investigators have reported that albuminous material in the albumin-secreting (tubular gland) cells of the magnum of hen oviduct accumulates in the ergastoplasmic cisternae and is released directly into the glandular lumen without being first concentrated into secretory granules in the Golgi region (Zeigel and Dalton, 1962). Present fine structural studies on the tubular gland cells in oviducts from actively laying wild-type Japanese quail and in an oviduct from an actively laying hen indicate that the Golgi apparatus is directly involved in the formation of secretory granules. At least three types of granules can be observed in the tubular gland cells at various times, and all types seem to be associated initially with the Golgi apparatus.In actively laying quail, the distribution of electron opaque, intermediate, and light granules within the superficial and deep regions of the glandular epithelium varies, depending on the presence of an egg in a particular region of the oviduct. Secretion of the product is merocrine, involving fusion of granule membranes with the plasmalemma of the cell surface.Granules first appear in the tubular gland cells of quail oviducts at about 4 1/2 weeks of age. The granules are of the electron opaque type and probably represent secretion in concentrated storage form. At this age, a few of the tubular gland cells exhibit distended ergastoplasmic cisternae containing material of low electron density. The appearance of these light cells, which occur with greater frequency in oviducts from older quail, probably reflects an increased level of secretory activity initiated by changes in hormonal levels. From 5 weeks of age on, intermediate and light (less concentrated) granules, as well as dark granules, are present.Supported by the National and Medical Research Councils of Canada.  相似文献   

19.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

20.
ABSTRACT The fine structure of female accessory reproductive gland (FARG) of the adult mealworm beetle, Tenebrio molitor is studied with light and electron microscopes. The FARG is a simple tubular organ that composed of two kinds of cells-secretory epithelial cells and duct forming cells. The lumen of FARG is lined with a thin cuticle and filled with secretory materials. Each secretory epithelial cell has its peculiar end apparatus in addition to well-developed rough endoplasmic reticulum (rER), mitochondria, and secretory vesicles. They are forming basal infolding along the plasma membrane. Along the inner surface of the plasma membrane, numerous secretory vesicles are seen. The glandular secretions of the epithelial secretory cells are synthesized via rER to Golgi apparatus, and are stored in the extracellular cavity in the epithelial cell. These secretions are drained to the lumen through the end apparatus and this type of glandular secretion in the insects is type III. Histochemical reactions reveal the major component of these glandular secretions is an acid mucopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号