首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An IgA1 half-molecule, which is composed of a deleted alpha1 chain linked with a disulfide bond to an intact kappa chain, was detected in a patient (Cha). The molecular weights of the paraprotein and the isolated alpha1 chain were estimated to be 75 000 and 53 000, respectively. Identification of tyrosine as the C-terminal amino acid and the presence of idiotypic determinants in the abnormal alpha1 chain indicated that the molecule would have an intact N-terminal variable region and a C-terminal region. Furthermore, no cleavage of the abnormal protein into Fab and Fc by proteolytic enzyme isolated from Neisseria gonorrhoeae suggested the absence of a "hinge" region in the abnormal alpha1 chain.  相似文献   

2.

Background

The lack of guidelines on reporting standards for protein electrophoresis may have led to significant differences in reports from different laboratories.

Objective

To determine the extent of variation in reporting of protein electrophoresis results in Australia and New Zealand.

Method

Questionnaires were distributed to laboratories throughout Australia and New Zealand asking about protein electrophoresis practices and reporting.

Results

Extensive variation was found in the following reporting practices: (a) units for urine Bence Jones protein (BJP); (b) reporting absence of a paraprotein rather than a normal pattern; (c) numerical reporting of all protein fractions or only the paraprotein; (d) warning of possible inaccuracy in the serum immunoglobulin result of the paraprotein type; (e) co-migration of a paraprotein with a normal serum protein; (f) use of a confirmatory test when a known paraprotein is no longer detectable.

Conclusions

A working party should be established to make recommendations on the reporting of protein electrophoresis. Implementation of such recommendations should reduce both report variation between laboratories and the risk of misinterpretation of reports.  相似文献   

3.
The ERV/ALR sulfhydryl oxidase domain is a versatile module adapted for catalysis of disulfide bond formation in various organelles and biological settings. Its four-helix bundle structure juxtaposes a Cys-X-X-Cys dithiol/disulfide motif with a bound flavin adenine dinucleotide (FAD) cofactor, enabling transfer of electrons from thiol substrates to non-thiol electron acceptors. ERV/ALR family members contain an additional di-cysteine motif outside the four-helix-bundle core. Although the location and context of this "shuttle" disulfide differs among family members, it is proposed to perform the same basic function of mediating electron transfer from substrate to the enzyme active site. We have determined by X-ray crystallography the structure of AtErv1, an ERV/ALR enzyme that contains a Cys-X4-Cys shuttle disulfide and oxidizes thioredoxin in vitro, and compared it to ScErv2, which has a Cys-X-Cys shuttle and does not oxidize thioredoxin at an appreciable rate. The AtErv1 shuttle disulfide is in a region of the structure that is disordered and thus apparently mobile and exposed. This feature may facilitate access of protein substrates to the shuttle disulfide. To test whether the shuttle disulfide region is modular and can confer on other enzymes oxidase activity toward new substrates, we generated chimeric enzyme variants combining shuttle disulfide and core elements from AtErv1 and ScErv2 and monitored oxidation of thioredoxin by the chimeras. We found that the AtErv1 shuttle disulfide region could indeed confer thioredoxin oxidase activity on the ScErv2 core. Remarkably, various chimeras containing the ScErv2 Cys-X-Cys shuttle disulfide were found to function efficiently as well. Since neither the ScErv2 core nor the Cys-X-Cys motif is therefore incapable of participating in oxidation of thioredoxin, we conclude that wild-type ScErv2 has evolved to repress activity on substrates of this type, perhaps in favor of a different, as yet unknown, substrate.  相似文献   

4.
The effect of destruction of disulfide bonds on the dynamics of proteins was studied by an example of lysozyme by the methods of molecular dynamics. In lysozyme, in the absence of disulfide bonds, the characteristic times of motions of secondary structure devices increased 3-7 times, whereas the amplitudes of fluctuations of secondary structure devices practically did not vary. In the absence of S-S-bonds, the volume of the molecule decreased approximately by 2%, primarily due to a "cleft" between the major and the small domains of lysozyme. Thus, disulfide bonds not only "glue" the secondary structure devices of the protein but also play a role of "rods", maintaining a certain free volume of the molecule necessary for the realization of its functions.  相似文献   

5.
Protein disulfide isomerase is a type of enzyme that catalyses the oxidation, isomerization and reduction of disulfide bonds. Conotoxins that containing disulfide bonds are likely substrates of protein disulfide isomerise. Here, we cloned 12 protein disulfide isomerise genes from 12 different cone snail species that inhabited the sea near Sanya in China. The full-length amino acid sequences of these protein disulfide isomerase genes share a high degree of homology, including the same -CGHC- active site sequence and -RDEL- endoplasmic reticulum retention signal. To obtain enough conus protein disulfide isomerase for functional studies, we constructed the expression vector pET28a-sPDI. Conus protein disulfide isomerase was successfully expressed using Escherichia coli expression system and purified using chromatography method of affinity chromatography. The recombinant conus protein disulfide isomerase showed the ability to catalyse disulfide bond formation and rearrangement in the lysozyme enzyme activity assay. The role of conus protein disulfide isomerase in the in vitro oxidative folding of conotoxins was investigated using synthetic linear conotoxin lt14a, a peptide composed of 13 amino acids. It was confirmed by high performance liquid chromatography and mass spectrometry analysis that conus protein disulfide isomerase can catalyse the disulfide bond formation of linear lt14a. Then, conus protein disulfide isomerase was acted as a fusion partner during the production of engineered peptidyl-prolyl cis–trans isomerase and lt14a derived from cone snails. It was shown that peptidyl-prolyl cis–trans isomerase and conotoxin lt14a are successfully expressed in a highly soluble form by fusion with conus protein disulfide isomerase. Thus, conus protein disulfide isomerase functions not only as an enzyme that catalyses oxidative process but also a fusion partner in recombinant conotoxin expression.  相似文献   

6.
    
Summary Conotoxin GS, a -carboxyglutamic acid(Gla)-containing neurotoxic peptide composed of 34 amino acid residues with one Gla residue and three intramolecular disulfide bonds, was synthesized in solution by the Boc strategy, using the cyclohexyl group to protect the ,-dicarboxyl functional side chain of the Gla residue. All of the protecting groups were removed by the HF procedure. During the synthesis, the Gla residue was completely stable and decarboxylated product was observed. The free peptide was subjected to the oxidative folding reaction. The reaction proceeded almost quantitatively in the presence of reduced and oxidized glutathione; however, no product was formed in the absence of redox reagents concomitant with the formation of disulfide isomers or intermediates. The final product was confirmed to be identical to natural conotoxin GS on reversed phase- and ion exchange-HPLC as well as capillary zone electrophoresis. The disulfide structure of synthetic conotoxin GS was determined by gas-phase sequencing and mass spectrometry of its proteolytic fragments and was found to be identical to those of other -conotoxins. The major disulfide isomer obtained during the oxidative folding reaction without redox reagents was determined in the same manner. To clarify the role of the Gla residue and the disulfide structure in the conotoxin GS molecule, decarboxylated conotoxin GS and its disulfide isomer were also synthesized, and the neurotoxic activities and circular dichroism spectra of these peptides were compared with those of conotoxin GS and its disulfide isomer. The results showed that the correct disulfide structure was necessary for expression of the toxicity; however, the presence of the Gla residue was not a prerequisite for both the activity and the calcium-dependent conformational transition.  相似文献   

7.
Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story   总被引:3,自引:0,他引:3  
McKee ML  FitzGerald DJ 《Biochemistry》1999,38(50):16507-16513
Upon entering mammalian cells, Pseudomonas exotoxin A (PE) is proteolytically processed by furin to produce an N-terminal fragment of 28 kDa and a C-terminal fragment of 37 kDa. Cleavage is followed by the reduction of a key disulfide bond (cysteines 265-287). This combination of proteolysis and reduction releases the 37 kDa C-terminal fragment, which then translocates to the cytosol where it ADP-ribosylates elongation factor 2 and inhibits protein synthesis. To investigate toxin reduction, furin-nicked PE or a hypercleavable mutant, PEW281A, was subjected to various treatments and then analyzed for fragment production. Reduction was evident only when unfolding conditions and a reducing agent were applied. Thermal unfolding of PE, as evidenced by changes in alpha-helical content and increased sensitivity to trypsin, rendered nicked toxin susceptible to protein disulfide isomerase- (PDI-) mediated reduction. When subcellular fractions from toxin-sensitive cells were incubated with nicked PE, toxin unfolding and reducing activities were present in the membrane fraction but not the soluble fraction. These data indicate that PE reduction is a two-step process: unfolding that allows access to the Cys265-287 disulfide bond, followed by reduction of the sulfur-sulfur bond by PDI or a PDI-like enzyme. With regard to cellular processing, we propose that the toxin's three-dimensional structure retains a "closed" conformation that restricts solvent access to the Cys265-287 disulfide bond until after a cell-mediated unfolding event.  相似文献   

8.
Horsegram protease inhibitor belongs to the Bowman-Birk class (BBIs) of low molecular weight (8-10 kDa), disulfide-rich, "dual" inhibitors, which can bind and inhibit trypsin and chymotrypsin either independently or simultaneously. They have seven conserved disulfide bonds. Horsegram BBI exhibits remarkable stability against denaturants like urea, guanidine hydrochloride (GdmCl) and heat, which can be attributed to these conserved disulfide bonds. On reductive denaturation, horsegram BBI follows the "two-state" mode of unfolding where all the disulfide bonds are reduced simultaneously resulting in the fully reduced protein without any accumulation of partially reduced intermediates. Reduction with dithiothreitol (DTT) followed apparent first-order kinetics and the rate constants (k(r)) indicated that the disulfide bonds were "hyperreactive" in nature. Oxidative refolding of the fully reduced and denatured inhibitor was possible at very low protein concentration in the presence of "redox" combination of reduced and oxidized glutathiones. Simultaneous recovery of trypsin and chymotryptic inhibitory activities indicated the concomitant folding of both the inhibitory subdomains. Folding efficiency decreased in the absence of the glutathiones and in the presence of denaturants (6 M urea and 4 M GdmCl), indicating the importance of disulfide shuffling and the formation of noncovalent interactions and secondary structural elements, respectively, for folding efficiency. Folding rate was significantly improved in the presence of protein disulfide isomerase (PDI). A 3-fold enhancement of rate was observed in the presence of PDI at molar ratio of 1:20 (PDI/inhibitor), indicating that disulfide bond formation and isomerization to be rate limiting in folding. Peptide prolyl cis-trans isomerase (PPI) did not affect rate at low concentrations, but at molar ratios of 1:1.5 (PPI/inhibitor), there was 1.4-fold enhancement of the folding rate, indicating that the prolyl imidic bond isomerizations may be slowing down the folding reaction but were not rate limiting.  相似文献   

9.
A solution molecular model for the conformationally dynamically heterogeneous Pyrococcus furiosus ferredoxin with an intact disulfide bond has been constructed on the basis of reported (1)H NMR spectral parameters using distance geometry and simulated annealing protocols. Conventional long-mixing time NOESY and H-bonding constraints have been augmented by previously reported short-mixing time NOESY, steady-state NOE, and cluster paramagnetism-induced relaxation. The family of 15 structures with inconsequential violations exhibited low rms deviations for backbone atoms for the overwhelming majority of the residues, including the cluster ligating loop with the unprecedented ligated Asp14. Larger rms deviations were observed across the disulfide bond, but closer inspection revealed that the 15 structures can be factored into 10 substructures exhibiting an "S" or right-handed disulfide orientation and 5 exhibiting an "R" or left-handed disulfide orientation. The remainder of the structure is indistinguishable for the two disulfide orientations but confirms stabilizing extensions of secondary structural elements in the lengthening of the long helix and both the lengthening and incorporation of a third strand into the beta-sheet involving the termini, with these extensions interacting strongly in a modular fashion through the rings of Tyr46 and Trp2. These extensions of stabilizing interactions in Pyrococcus furiosus Fd, however, lead to strong destabilization of the disulfide bond and destabilization of the highly conserved first and last beta-turns in the sequence. It is concluded that the structural alternations in Pyrococcus Fd relative to other hyperthermostable Fds are not to increase thermostability but to place "stress" on the disulfide bond and render it more reducible. The possible physiological implications of this unique reducible disulfide bond are discussed.  相似文献   

10.

Background

Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood.

Results

We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins.

Conclusions

This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains.  相似文献   

11.
Bispecific antisera, or "antisera-systems", containing class- and subclass-specific antibodies to IgG were obtained from rabbits, goats and guinea pigs after brief courses of immunization with purified G1, G2, G3 and G4 paraproteins. After the elimination of antibodies to light chains by adsorption these antisera were tested in immunoelectrophoresis and radial immunodiffusion in gel with sera containing G paraproteins of different subclasses. In immunoelectrophoresis double lines and in radial immunodiffusion with G paraproteins of heterologous subclasses double rings were obtained: the external lines (or the external rings) were formed as a result of interaction between G paraproteins and antibodies to class-specific IgG determinants, the inner lines (or the inner rings) were formed as a result of interaction between the corresponding subclass of normal IgG and subclass-specific antibodies. The identification of different G paraprotein subclasses gave similar results when carried out with "antisera-systems" and with monospecific antisera to the corresponding IgG subclasses. "Antisera-systems" proved to be suitable for use in the identification of G paraprotein subclasses, as well as in the quantitation of different subclasses in normal IgG.  相似文献   

12.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

13.
Summary Unproteolyzed gap junctions isolated from rat heart and liver were analyzed for the presence of inter-subunit disulfide bonds by sodium dodecylsulfate polyacrylamide gel electrophoresis. Rat cardiac junctions contained multiple disulfide bonds connecting theM r 47,000 subunits of the same connexon and of different connexons. Inter-subunit disulfide bonds were absent in liver junctions. Unproteolyzed rat heart gap junctions were resistant to deoxycholate in their oxidized state, but dissolved readily in the detergent when the disulfide bonds were cleaved with -mercaptoethanol. Disulfide bonding in proteolyzed cardiac junctions was limited to pairs ofM r 29,500 subunits. These junctions were not soluble in deoxycholate even in the presence of -mercaptoethanol. These results show that heart and liver junctions differ in their quarternary organization.  相似文献   

14.
So far IgE monoclonal paraproteins have been found only in patients with malignant diseases, though there are benign monoclonal paraproteins of other immunoglobulin classes. A patient with osteoporosis first seen in Paris in 1965 was found to have a paraprotein type lambda. In 1977 immunoelectrophoresis identified this as IgE lambda paraprotein, and immunodiffusion studies showed precipitin bands identical with those in patients with IgE myeloma. This patient seemed to have a benign monoclonal IgE gammopathy which had existed for 14 years. Though the possibility of transition into multiple myeloma cannot be excluded, this case suggests that a monoclonal expansion of IgE lymphocytes need not produce malignant change.  相似文献   

15.
This study characterizes the structural and functional significance of sulfhydryl residues in human plasma heparin cofactor II (HCII). For quantification of sulfhydryl groups, the extinction coefficient of HCII was redetermined and found to be 0.593 ml mg-1 cm-1 using second-derivative spectroscopy and multicomponent analysis assuming 4, 10, and 2 residues of tryptophan, tyrosine, and tyrosine-O-sulfate per mole of protein, respectively. The results show that tyrosine-O-sulfate residues in HCII and in cholecystokinin peptide fragments (as model compounds) do not significantly contribute to the absorbance spectrum from 280 to 300 nm. A total of three sulfhydryl groups per mole of HCII was detected by Ellman's reagent titration, with or without treatment with dithioerythritol, indicating the absence of intramolecular disulfide bonds. Incubation of HCII with 0.1-10 mM dithioerythritol did not diminish its heparin-enhanced thrombin inhibition activity. Treatment with various sulfhydryl-specific reagents, including p-mercuribenzoate, HgCl2, and N-substituted maleimide derivatives, inactivated HCII. Titration with Ellman's reagent after these reactions identified the modification site as a cysteinyl residue(s). However, complete methanethio derivatization of the sulfhydryl groups of HCII using methyl methanethiosulfonate did not alter heparin-catalyzed thrombin inhibition. These results indicate that the sulfhydryl groups of HCII are not essential for thrombin inhibition. HCII differs from antithrombin III, which contains an essential disulfide bond for heparin-dependent thrombin inhibition (Longas, M. O., et al. (1980) J. Biol. Chem. 255, 3436). Furthermore, within the "serpin" (serine proteinase inhibitor) superfamily, HCII resembles chicken ovalbumin in occurrence of sulfhydryl residues and reactivity with various sulfhydryl group-directed compounds.  相似文献   

16.
Trypsin inhibitor EETI II, possessing six cysteinesengaged in three disulfide bridges, shares a commonstructural motif with other proteins of differentorigins and functions. To understand the principlesthat govern folding of this largely distributed basicscaffold, mainly composed of a small triple-stranded-sheet, we have studied different stages in thefolding of EETI II. The conformational properties ofa synthetic analogue of EETI II possessing only onenative (15-27) disulfide bridge were investigated withthe combined use of 1H NMR and molecularmodelling. Although two native-like reverse turns wereobserved, formation of -sheet could not beevidenced in the one disulfide analogue, while themotif has been shown to be present in a foldingintermediate with two native disulfide bridges (9-21and 15-27). These results suggest that the structuralmotif requires stabilisation by two disulfide bridges  相似文献   

17.
Quentmeier A  Li L  Friedrich CG 《FEBS letters》2008,582(25-26):3701-3704
The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, reacts with three different Sox proteins. Its active site Cys110(Y) is on the carboxy-terminus of the SoxY subunit. SoxYZ "as isolated" consisted mainly of the catalytically inactive SoxY-Y(Z)(2) heterotetramer linked by a Cys110(Y)-Cys110(Y) interprotein disulfide. Sulfide activated SoxYZ "as isolated" 456-fold, reduced the disulfide, and yielded an active SoxYZ heterodimer. The reductant tris(2-carboxyethyl)phosphine (TCEP) inactivated SoxYZ. This form was not re-activated by sulfide, which identified it as a different inactive form. In analytical gel filtration, the elution of "TCEP-treated" SoxYZ was retarded compared to active SoxYZ, indicating a conformational change. The possible enzymes involved in the re-activation of each inactive form of SoxYZ are discussed.  相似文献   

18.
We reported the main rheological and coagulative features in seven patients affected with monoclonal gammapathy: four of them presented IgA class paraprotein, two IgM class paraprotein and one IgG class paraprotein. All presented increased plasma and serum viscosity. The four patients affected with IgA monoclonal paraproteinaemia underwent one plasma volume plasmapheresis. This procedure has been demonstrated to be useful and effective in reducing both plasma and serum viscosity.  相似文献   

19.
SUMMARY 1. The serotonin1A (5-HT1A) receptors are members of a superfamily of seven-transmembrane-domain receptors that couple to G-proteins. They appear to be involved in various behavioral and cognitive functions. Mutagenesis and modeling studies point out that the ligand-binding sites in serotonin receptors are located in the transmembrane domain. However, these binding sites are not very well characterized. Since disulfide bonds and sulfhydryl groups have been shown to play vital roles in the assembly, organization, and function of various G-protein-coupled receptors, we report here the effect of disulfide and sulfhydryl group modifications on the agonist and antagonist binding activity of 5-HT1A receptors from bovine hippocampus.2. DTT or NEM treatment caused a concentration-dependent reduction in specific binding of the agonist and antagonist in 5-HT1A receptors from bovine hippocampal native and solubilized membranes. This is supported by a concomitant reduction in binding affinity.3. Pretreatment of the receptor with unlabeled ligands prior to chemical modifications indicate that the majority of disulfides or sulfhydryl groups that undergo modification giving rise to inhibition in binding activity could be at the vicinity of the ligand-binding sites.4. In addition, ligand-binding studies in presence of GTP--S, a nonhydrolyzable analogue of GTP, indicate that sulfhydryl groups (and disulfide bonds to a lesser extent) are vital for efficient coupling between the 5-HT1A receptor and the G-protein.5. Our results point out that disulfide bonds and sulfhydryl groups could play an important role in ligand binding in 5-HT1A receptors.  相似文献   

20.
The PST-01 protease is secreted by the organic solvent-tolerant microorganism Pseudomonas aeruginosa PST-01 and is stable in the presence of various organic solvents. Therefore, the PST-01 strain and the PST-01 protease are very useful for fermentation and reactions in the presence of organic solvents, respectively. The organic solvent-stable PST-01 protease has two disulfide bonds (between Cys-30 and Cys-58 and between Cys-270 and Cys-297) in its molecule. Mutant PST-01 proteases in which one or both of the disulfide bonds were deleted were constructed by site-directed mutagenesis, and the effect of the disulfide bonds on the activity and the various stabilities was investigated. The disulfide bond between Cys-270 and Cys-297 in the PST-01 protease was found to be essential for its activity. The disulfide bond between Cys-30 and Cys-58 played an important role in the organic solvent stability of the PST-01 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号