首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in molecular phylogenetics are continuously changing our perception of the phylogenetic relationships among the main arthropod lineages: crustaceans, hexapods, chelicerates, and myriapods. Besides the intrinsic interest in unraveling the evolution of the largest animal phylum, these studies are basic to an understanding of one of the major transitions in animal evolution-i.e., the conquest of land with all its associated structural and functional adaptations. Myriapods have been traditionally considered the closest relatives of hexapods, thus implying only one origin of terrestriality for the tracheate lineage, but this view is now challenged by molecular evidence. Sequence data available to date for centipedes and millipedes are very limited, and the taxon sampling is strongly biased. The most critical gap was the scutigeromorph centipedes, which are the sister group to all remaining Chilopoda from which they probably diverged in the Silurian if not earlier. We obtained the first complete mitochondrial sequence for a representative of this clade, the house centipede. In our phylogenetic analyses of the protein-coding genes in this mitochondrial genome, along with 16 further ones representing the other major arthropod clades plus two outgroups, the myriapods formed a clade with the chelicerates. This implies that water-to-land transition occurred at least three times (hexapods, myriapods, arachnids) during the evolution of the Arthropoda. In addition, in contrast to all previous studies, our best supported topologies favor paraphyly of the myriapods with respect to the chelicerates. This would increase to four the main events of land colonization in arthropods (once for centipedes, once for millipedes).  相似文献   

2.
Deep‐level arthropod phylogeny has been in a state of upheaval ever since the emergence of molecular tree reconstruction approaches. While a consensus has settled in that hexapods are more closely related to crustaceans than to myriapods, the phylogenetic position of the latter has remained a matter of debate. Mitochondrial, nuclear, and genome‐scale studies have proposed rejecting the long‐standing superclade Mandibulata, which unites myriapods with insects and crustaceans, in favor of a clade that unites myriapods with chelicerates and has become known as Paradoxapoda or Myriochelata. Here we discuss the progress, problems, and prospects of arriving at the final arthropod tree.  相似文献   

3.
Hox genes and the evolution of the arthropod body plan   总被引:1,自引:0,他引:1  
In recent years researchers have analyzed the expression patterns of the Hox genes in a multitude of arthropod species, with the hope of understanding the mechanisms at work in the evolution of the arthropod body plan. Now, with Hox expression data representing all four major groups of arthropods (chelicerates, myriapods, crustaceans, and insects), it seems appropriate to summarize the results and take stock of what has been learned. In this review we summarize the expression and functional data regarding the 10 arthropod Hox genes: labial proboscipedia, Hox3/zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B. In addition, we discuss mechanisms of developmental evolutionary change thought to be important for the emergence of novel morphological features within the arthropods.  相似文献   

4.
Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S+18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-transformed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of established taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by nematomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods-hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)-formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and 'Chelicerata+Myriapoda' (a clade that we name 'Paradoxopoda'). Pycnogonids (sea spiders) were either chelicerates or part of the 'chelicerate+myriapod' clade, but not basal arthropods. Certain clades derived from morphological taxonomy, such as Mandibulata, Atelocerata, Schizoramia, Maxillopoda and Cycloneuralia, are inconsistent with these rRNA data. The 28S gene contained more signal than the 18S gene, and contributed to the improved phylogenetic resolution. Our findings are similar to those obtained from mitochondrial and nuclear (e.g., elongation factor, RNA polymerase, Hox) protein-encoding genes, and should revive interest in using rRNA genes to study arthropod and ecdysozoan relationships.  相似文献   

5.
While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree-reconstruction artefacts.  相似文献   

6.
A phylogeny of the arthropods was inferred from analyses of amino acid sequences derived from the nuclear genes encoding elongation factor-1 alpha and the largest subunit of RNA polymerase II using maximum- parsimony, neighbor-joining, and maximum-likelihood methods. Analyses of elongation factor-1 alpha from 17 arthropods and 4 outgroup taxa recovered many arthropod clades supported by previous morphological studies, including Diplopoda, Myriapoda, Insecta, Hexapoda, Branchiopoda (Crustacea), Araneae, Tetrapulmonata, Arachnida, Chelicerata, and Malacostraca (Crustacea). However, counter to previous studies, elongation factor-1 alpha placed Malacostraca as sister group to the other arthropods. Branchiopod crustaceans were found to be more closely related to hexapods and myriapods than to malacostracan crustaceans. Sequences for RNA polymerase II were obtained from 11 arthropod taxa and were analyzed separately and in combination with elongation factor-1 alpha. Results from these analyses were concordant with those derived from elongation factor-1 alpha alone and provided support for a Hexapoda/Branchiopoda clade, thus arguing against the monophyly of the traditionally defined Atelocerata (Hexapoda + Myriapoda).   相似文献   

7.
We determined the nearly complete mitochondrial genome of Pseudosquilla ciliata (Crustacea, Stomatopoda), including all protein-coding genes and all but one of the transfer RNAs. There were no gene rearrangements relative to the pattern shared by crustaceans and hexapods. Phylogenetic analysis using concatenated amino acid sequences of the mitochondrial protein-coding genes confirmed a basal position of Stomatopoda among Eumalacostraca. Pancrustacean relationships based on mitogenomic data were analyzed and are discussed in relation to crustacean and hexapod monophyly and hexapod affinities to crustacean subtaxa.  相似文献   

8.
Recent molecular analyses indicate that crustaceans and hexapods form a clade (Pancrustacea or Tetraconata), but relationships among its constituent lineages, including monophyly of crustaceans, are controversial. Our phylogenetic analysis of three protein-coding nuclear genes from 62 arthropods and lobopods (Onychophora and Tardigrada) demonstrates that Hexapoda is most closely related to the crustaceans Branchiopoda (fairy shrimp, water fleas, etc.) and Cephalocarida + Remipedia, thereby making hexapods terrestrial crustaceans and the traditionally defined Crustacea paraphyletic. Additional findings are that Malacostraca (crabs, isopods, etc.) unites with Cirripedia (barnacles, etc.) and they, in turn, with Copepoda, making the traditional crustacean class Maxillopoda paraphyletic. Ostracoda (seed shrimp)--either all or a subgroup--is associated with Branchiura (fish lice) and likely to be basal to all other pancrustaceans. A Bayesian statistical (non-clock) estimate of divergence times suggests a Precambrian origin for Pancrustacea (600 Myr ago or more), which precedes the first unambiguous arthropod fossils by over 60 Myr.  相似文献   

9.
Despite the advent of modern molecular and computational methods, the phylogeny of the four major arthropod groups (Chelicerata, Myriapoda, Crustacea and Hexapoda, including the insects) remains enigmatic. One particular challenge is the position of myriapods as either the closest relatives to chelicerates (Paradoxopoda/Myriochelata hypothesis), or to crustaceans and hexapods (Mandibulata hypothesis). While neither hypothesis receives conclusive support from molecular analyses, most morphological studies favour the Mandibulata concept, with the mandible being the most prominent feature of this group. Although no morphological evidence was initially available to support the Paradoxopoda hypothesis, a putative synapomorphy of chelicerates and myriapods has recently been put forward based on studies of neurogenesis. However, this and other morphological characters remain of limited use for phylogenetic systematics owing to the lack of data from an appropriate outgroup. Here, we show that several embryonic characters are synapomorphies uniting the chelicerates and myriapods, as revealed by an outgroup comparison with the Onychophora or velvet worms. Our findings, thus provide, to our knowledge, first morphological/embryological support for the monophyly of the Paradoxopoda and suggest that the mandible might have evolved twice within the arthropods.  相似文献   

10.
The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two 'extra' Hox genes in the centipede compared with those in DROSOPHILA: Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.  相似文献   

11.
In Metazoa, Hox genes control the identity of the body parts along the anteroposterior axis. In addition to this homeotic function, these genes are characterized by two conserved features: They are clustered in the genome, and they contain a particular sequence, the homeobox, encoding a DNA-binding domain. Analysis of Hox homeobox sequences suggests that the Hox cluster emerged early in Metazoa and then underwent gene duplication events. In arthropods, the Hox cluster contains eight genes with a homeotic function and two other Hox-like genes, zerknullt (zen)/Hox3 and fushi tarazu (ftz). In insects, these two genes have lost their homeotic function but have acquired new functions in embryogenesis. In contrast, in chelicerates, these genes are expressed in a Hox-like pattern, which suggests that they have conserved their ancestral homeotic function. We describe here the characterization of Diva, the homologue of ftz in the cirripede crustacean Sacculina carcini. Diva is located in the Hox cluster, in the same position as the ftz genes of insects, and is not expressed in a Hox-like pattern. Instead, it is expressed exclusively in the central nervous system. Such a neurogenic expression of ftz has been also described in insects. This study, which provides the first information about the Hoxcluster in Crustacea, reveals that it may not be much smaller than the insect cluster. Study of the Diva expression pattern suggests that the arthropod ftz gene has lost its ancestral homeotic function after the divergence of the Crustacea/Hexapoda clade from other arthropod clades. In contrast, the function of ftz during neurogenesis is well conserved in insects and crustaceans.  相似文献   

12.
This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans, as is widely claimed, but grouped instead with an euphausiacean (krill). Within centipedes, Craterostigmus was the sister to all other pleurostigmophorans, contrary to the consensus view. Our trees also united myriapods (millipedes and centipedes) with chelicerates (horseshoe crabs, spiders, scorpions, and relatives) and united pycnogonids (sea spiders) with chelicerates, but with much less support than in the previous rRNA-gene study. Finally, kinorhynchs joined priapulans (penis worms) at the base of Ecdysozoa.  相似文献   

13.
Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda + Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.  相似文献   

14.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   

15.
Several features of Pax3/7 gene expression are shared among distantly related insects, including pair-rule, segment polarity, and neural patterns. Recent data from arachnids imply that roles in segmentation and neurogenesis are likely to be played by Pax3/7 genes in all arthropods. To further investigate Pax3/7 genes in non-insect arthropods, we isolated two monoclonal antibodies that recognize the products of Pax3/7 genes in a wide range of taxa, allowing us to quickly survey Pax3/7 expression in all four major arthropod groups. Epitope analysis reveals that these antibodies react to a small subset of Paired-class homeodomains, which includes the products of all known Pax3/7 genes. Using these antibodies, we find that Pax3/7 genes in crustaceans are expressed in an early broad and, in one case, dynamic domain followed by segmental stripes, while myriapods and chelicerates exhibit segmental stripes that form early in the posterior-most part of the germ band. This suggests that Pax3/7 genes acquired their role in segmentation deep within, or perhaps prior to, the arthropod lineage. However, we do not detect evidence of pair-rule patterning in either myriapods or chelicerates, suggesting that the early pair-rule expression pattern of Pax3/7 genes in insects may have been acquired within the crustacean-hexapod lineage.  相似文献   

16.
The current discussion about the relationships of higher arthropod taxa has led to a conflict between the traditional Tracheata (=Atelocerata) concept (hexapods united with myriapods), the Tetraconata concept (hexapods united with crustaceans, excluding myriapods), and the Paradoxopoda or Myriochelata concept (myriapods united with cheliceratans), with major contradictions between morphological and molecular data. We have analyzed a character set which apparently has completely vanished from the recent debate, namely the equipment of the trunk pleura of myriapods and insects with a characteristic set of concentric sclerites around the leg base and accompanying muscles. Based on the work of Heymons (1899) these sclerites were thought to be remains of the first appendage article, then denominated “subcoxa”. We have re-visited this old idea and show the arrangement of the much discussed pleural structures by SEM for the first time. Obviously a characteristic pattern of concentric pleural plates around the leg-base is present in all major myriapod taxa, including for the first time evidence for their presence in Progoneata. Because of their equal structure and orientation, the pleural sclerites present in entognathous and ectognathous insects may be derived from the same ground pattern. We conclude that the pleurites of Hexapoda and Myriapoda seem to be homologous structures, and there is evidence that the “subcoxa” of Tracheata is homologous with the coxa of crustaceans. Since no other arthropods show these sclerites, the transformation of the crustacean coxa to the pleural region in myriapods and insects is probably a synapomorphy congruent with the traditional Tracheata-hypothesis. Further investigations of recently published molecular work using the phylogenetic network software SplitsTree V.4 indicate that information content of several data sets is not convincing.  相似文献   

17.
Recent phylogenetic analyses using molecular data suggest that hexapods are more closely related to crustaceans than to myriapods, a result that conflicts with long-held morphology-based hypotheses. Here we contribute additional information to this debate by conducting phylogenetic analyses on two nuclear protein-encoding genes, elongation factor-1 alpha (EF-1 alpha) and the largest subunit of RNA polymerase II (Pol II), from an extensive sample of arthropod taxa. Results were obtained from two data sets. One data set comprised 1092 nucleotides (364 amino acids) of EF-1 alpha and 372 nucleotides (124 amino acids) of Pol II from 30 arthropods and three lobopods. The other data set contained the same EF-1 alpha fragment and an expanded 1038-nucleotide (346-amino-acid) sample of Pol II from 17 arthropod taxa. Results from maximum-parsimony and maximum-likelihood analyses strongly supported the existence of a Crustacea + Hexapoda clade (Pancrustacea) over a Myriapoda + Hexapoda clade (Atelocerata). The apparent incompatibility between the molecule-based Pancrustacea hypothesis and morphology-based Atelocerata hypothesis is discussed.  相似文献   

18.
Several alternative hypotheses on the relationships betweenthe major arthropod groups are still being discussed. We reexaminehere the chelicerate/myriapod relationship by comparing previouslypublished morphological data on neurogenesis in the euarthropodgroups and presenting data on an additional myriapod (Strigamiamaritima). Although there are differences in the formation ofneural precursors, most euarthropod species analyzed generateabout 30 single neural precursors (insects/crustaceans) or precursorgroups (chelicerates/myriapods) per hemisegment that are arrangedin a regular pattern. The genetic network involved in recruitmentand specification of neural precursors seems to be conservedamong euarthropods. Furthermore, we show here that neural precursoridentity seems to be achieved in a similar way. Besides theseconserved features we found 2 characters that distinguish insects/crustaceansfrom myriapods/chelicerates. First, in insects and crustaceansthe neuroectoderm gives rise to epidermal and neural cells,whereas in chelicerates and myriapods the central area of theneuroectoderm exclusively generates neural cells. Second, neuralcells arise by stem-cell-like divisions of neuroblasts in insectsand crustaceans, whereas groups of mainly postmitotic neuralprecursors are recruited for the neural fate in cheliceratesand myriapods. We discuss whether these characteristics representa sympleisiomorphy of myriapods and chelicerates that has beenlost in the more derived Pancrustacea or whether these characteristicsare a synapomorphy of myriapods and chelicerates, providingthe first morphological support for the Myriochelata group.  相似文献   

19.

Background  

A recent study on expression and function of the ortholog of the Drosophila collier (col) gene in various arthropods including insects, crustaceans and chelicerates suggested a de novo function of col in the development of the appendage-less intercalary segment of insects. However, this assumption was made on the background of the now widely-accepted Pancrustacea hypothesis that hexapods represent an in-group of the crustaceans. It was therefore assumed that the expression of col in myriapods would reflect the ancestral state like in crustaceans and chelicerates, i.e. absence from the premandibular/intercalary segment and hence no function in its formation.  相似文献   

20.
We investigated brain development in the horseshoe crab Limulus polyphemus and several other arthropods via immunocytochemical methods, i.e. antibody stainings against acetylated alpha-tubulin and synapsin. According to the traditional view, the first appendage-bearing segment in chelicerates (the chelicerae) is not homologous to the first appendage-bearing segment of mandibulates (first antenna, deutocerebrum) but to the segment of the second antenna (tritocerebrum) or the intercalary segment in hexapods and myriapods. Accordingly, the segment of the deutocerebrum in chelicerates would be completely reduced. The main arguments for this view are: (1) the postoral origin of the cheliceral ganglion, (2) a poststomodaeal commissure, and (3) a connection of the cheliceral ganglion to the stomatogastric system. Our data show that these arguments are not convincing. During the development of horseshoe crabs there is no evidence for a former additional segment in front of the chelicerae. Instead, comparison of the brain structure (neuropil ring) between chelicerates, crustaceans and insects shows remarkable similarities. Furthermore, the cheliceral commissure in horseshoe crabs runs mainly praestomodaeal, which would be unique for a tritocerebral commissure. An unbiased view of the developing nervous system in the "head" of chelicerates, crustaceans and insects leads to a homologisation of the cheliceral segment and that of the (first) antenna (= deutocerebrum) of mandibulates that is also congruous to the interpretation of the Hox gene expression patterns. Thus, our data provide morphological evidence for the existence of a chelicerate deutocerebrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号