首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nicotinic acetylcholine receptor (AChR) is a ligand-gated ion channel found in muscles and neurons. Muscle AChR, formed by five homologous subunits (alpha2 beta gamma delta or alpha2 beta gamma epsilon), is the major antigen in the autoimmune disease, myasthenia gravis (MG), in which pathogenic autoantibodies bind to, and inactivate, the AChR. The extracellular domain (ECD) of the human muscle alpha subunit has been heterologously expressed and extensively studied. Our aim was to obtain satisfactory amounts of the ECDs of the non-alpha subunits of human muscle AChR for use as starting material for the determination of the 3D structure of the receptor ECDs and for the characterization of the specificities of antibodies in sera from patients with MG. We expressed the N-terminal ECDs of the beta (amino acids 1-221; beta1-221), gamma (amino acids 1-218; gamma1-218), and epsilon (amino acids 1-219; epsilon1-219) subunits of human muscle AChR in the yeast, Pichia pastoris. beta1-221 was expressed at approximately 2 mg.L(-1) culture, whereas gamma1-218 and epsilon1-219 were expressed at 0.3-0.8 mg.L(-1) culture. All three recombinant polypeptides were glycosylated and soluble; beta1-221 was mainly in an apparently dimeric form, whereas gamma1-218 and epsilon1-219 formed soluble oligomers. CD studies of beta1-221 suggested that it has considerable beta-sheet secondary structure with a proportion of alpha-helix. Conformation-dependent mAbs against the ECDs of the beta or gamma subunits specifically recognized beta1-221 or gamma1-218, respectively, and polyclonal rabbit antiserum raised against purified beta1-221 bound to (125)I-labeled alpha-bungarotoxin-labeled human AChR. Moreover, immobilization of each ECD on Sepharose beads and incubation of the ECD-Sepharose matrices with MG sera caused a significant reduction in the concentrations of autoantibodies in the sera, showing specific binding to the recombinant ECDs. These results suggest that the expressed proteins present some near-native conformational features and are thus suitable for our purposes.  相似文献   

2.
A new subunit, beta 2, of the neuronal nicotinic receptor family has been identified. This subunit has the structural features of a non-agonist-binding subunit. We provide evidence that beta 2 can substitute for the muscle beta 1 subunit to form a functional nicotinic receptor in Xenopus oocytes. Expression studies performed in oocytes have demonstrated that three different neuronal nicotinic acetylcholine receptors can be formed by the pairwise injection of beta 2 mRNA and each of the neuronal alpha subunit mRNAs. The beta 2 gene is expressed in PC12 cells and in areas of the central nervous system where the alpha 2, alpha 3, and alpha 4 genes are expressed. These results lead us to propose that the nervous system expresses diverse forms of neuronal nicotinic acetylcholine receptors by combining beta 2 subunits with different agonist-binding alpha subunits.  相似文献   

3.
Oligomerization of complete and incomplete combinations of rat muscle-type nicotinic acetylcholine receptor (nAChR) subunits in Xenopus oocytes was studied by blue native PAGE and compared with acetylcholine-activated current in these cells. The rank order of expression level judged by current was alpha 1 beta 1 gamma delta > alpha 1 beta 1 gamma > alpha 1 beta 1 delta > alpha 1 gamma delta > alpha 1 delta > alpha 1 gamma. alpha 1 and alpha 1 beta 1 were not functional. Protein complexes incorporating a heptahistidyl-tagged alpha 1 subunit were chromatographically purified from digitonin extracts of oocytes and resolved by blue native PAGE. In the absence of any co-expressed nAChR subunit, the majority of alpha 1 formed aggregates. Co-expression of beta 1 had no effect on alpha 1 aggregation, whereas both gamma and delta diminished alpha 1 aggregation in favor of discrete oligomers: alpha 1 formed tetramers together with gamma and dimers, trimers, and tetramers together with delta. When alpha 1 gamma was complemented with beta 1 to form a functional alpha 1 beta 1 gamma receptor, a small amount of a pentamer was found besides a prominent alpha 1-His7 beta 1 gamma trimer. Expression of the functional alpha 1 beta 1 delta receptor yielded marked amounts of a pentamer besides dimers and trimers. These results are discussed in terms of the assembly model of Green and Claudio (Cell 74, 57-69, 1994), substantiating that blue native PAGE is suited for the investigation of ion channel assembly.  相似文献   

4.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

5.
A gene coding for a soluble protein with homology to the beta subunit of the nicotinic acetylcholine receptor from goldfish was isolated from a cDNA library of Haementeria ghilianii salivary glands. Comparison of the leech protein sequence with the database showed that the N terminus has high homology with the extracellular portion of acetylcholine receptor beta subunits, whilst the C terminus, highly charged, has homology to proteins which may be involved in chelating divalent cations. The leech protein was expressed in mammalian cells and the product compared to the native protein. Both proteins are glycosylated and form polymers which are disrupted by heat but not by reducing agents. A role for this protein in salivary gland secretion is suggested.  相似文献   

6.
The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.  相似文献   

7.
A new nicotinic acetylcholine receptor (nAChR) subunit, beta 4, was identified by screening a rat genomic library. In situ hybridization histochemistry revealed expression of the beta 4 gene in the medial habenula of adult rat brains. The primary structure of this subunit was deduced from a cDNA clone isolated from a PC12 cDNA library. Functional nAChRs were detected in Xenopus oocytes injected in pairwise combinations with in vitro synthesized RNAs encoding beta 4 and either the alpha 2, alpha 3, or alpha 4 subunit. Unlike the alpha 3 beta 2 receptor, the alpha 3 beta 4 receptor is not blocked by bungarotoxin 3.1, indicating that the beta subunit can affect the sensitivity of neuronal nAChRs to this toxin. These results extend the functional diversity of nicotinic receptors in the nervous system.  相似文献   

8.
We have investigated the mechanisms of assembly and transport to the cell surface of the mouse muscle nicotinic acetylcholine receptor (AChR) in transiently transfected COS cells. In cells transfected with all four subunit cDNAs, AChR was expressed on the surface with properties resembling those seen in mouse muscle cells (Gu, Y., A. F. Franco, Jr., P.D. Gardner, J. B. Lansman, J. R. Forsayeth, and Z. W. Hall. 1990. Neuron. 5:147-157). When incomplete combinations of AChR subunits were expressed, surface binding of 125I-alpha-bungarotoxin was not detected except in the case of alpha beta gamma which expressed less than 15% of that seen with all four subunits. Immunoprecipitation and sucrose gradient sedimentation experiments showed that in cells expressing pairs of subunits, alpha delta and alpha gamma heterodimers were formed, but alpha beta was not. When three subunits were expressed, alpha delta beta and alpha gamma beta complexes were formed. Variation of the ratios of the four subunit cDNAs used in the transfection mixture showed that surface AChR expression was decreased by high concentrations of delta or gamma cDNAs in a mutually competitive manner. High expression of delta or gamma subunits also each inhibited formation of a heterodimer with alpha and the other subunit. These results are consistent with a defined pathway for AChR assembly in which alpha delta and alpha gamma heterodimers are formed first, followed by association with the beta subunit and with each other to form the complete AChR.  相似文献   

9.
Although neuronal nicotinic acetylcholine receptors from insects have been reconstituted in vitro more than a decade ago, our knowledge about the subunit composition of native receptors as well as their functional properties still remains limited. Immunohistochemical evidence has suggested that two alpha subunits, alpha-like subunit (ALS) and Drosophila alpha2 subunit (Dalpha2), are colocalized in the synaptic neuropil of the Drosophila CNS and therefore may be subunits of the same receptor complex. To gain further understanding of the composition of these nicotinic receptors, we have examined the possibility that a receptor may imbed more than one alpha subunit using immunoprecipitations and electrophysiological investigations. Immunoprecipitation experiments of fly head extracts revealed that ALS-specific antibodies coprecipitate Dalpha2, and vice versa, and thereby suggest that these two alpha subunits must be contained within the same receptor complex, a result that is supported by investigations of reconstituted receptors in Xenopus oocytes. Discrimination between binary (ALS/beta2 or Dalpha2/beta2) and ternary (ALS/Dalpha2/beta2) receptor complexes was made on the basis of their dose-response curve to acetylcholine as well as their sensitivity to alpha-bungarotoxin or dihydro-beta-erythroidine. These data demonstrate that the presence of the two alpha subunits within a single receptor complex confers new receptor properties that cannot be predicted from knowledge of the binary receptor's properties.  相似文献   

10.
Heterologous expression of the extracellular domains (ECDs) of the nicotinic acetylcholine receptor (AChR) subunits may give large amounts of proteins for studying the functional and spatial characteristics of their ligand-binding sites. The ECD of the alpha 7 subunit of the homo-oligomeric alpha 7 neuronal AChR appears to be a more suitable object than the ECDs of other heteromeric neuronal or muscle-type AChRs. The rat alpha 7 ECDs (amino-acid residues approximately 1-210) were recently expressed in Escherichia coli as fusion proteins with maltose-binding protein [Fischer, M., Corringer, P., Schott, K., Bacher, A. & Changeux, J. (2001) Proc. Natl Acad. Sci. USA 98, 3567-3570] and glutathione S-transferase (GST) [Utkin, Y., Kukhtina, V., Kryukova, E., Chiodini, F., Bertrand, D., Methfessel, C. & Tsetlin, V. (2001) J. Biol. Chem. 276, 15810-15815]. However, these proteins exist in solution mostly as high-molecular mass aggregates rather than monomers or oligomers. In the present work it is found that refolding of GST-alpha 7-(1-208) protein in the presence of 0.1% SDS considerably decreases the formation of high-molecular mass aggregates. The C116S mutation in the alpha 7 moiety was found to further decrease the aggregation and to increase the stability of protein solutions. This mutation slightly increased the affinity of the protein for alpha-bungarotoxin (from Kd approximately 300 to 150 nm). Gel-permeation HPLC was used to isolate the monomeric form of the GST-alpha 7-(1-208) protein and its mutant almost devoid of SDS. CD spectra revealed that the C116S mutation considerably increased the content of beta structure and made it more stable under different conditions. The monomeric C116S mutant appears promising both for further structural studies and as a starting material for preparing the alpha 7 ECD in an oligomeric form.  相似文献   

11.
We demonstrated previously the involvement of a nicotinic acetylcholine receptor containing an alpha7 subunit in the human sperm acrosome reaction (a modified exocytotic event essential to fertilization). Here we report the presence in human sperm of alpha7, alpha9, alpha3, alpha5, and beta4 nicotinic acetylcholine receptor subunits and the following proteins known to be associated with the receptor in the somatic cell: rapsyn and the tyrosine kinases c-SRC and FYN. The alpha7 subunit appears to exist as a homomer in the posterior post-acrosomal and neck regions of sperm and is probably linked to the cytoskeleton via rapsyn. The alpha3, alpha5, and beta4 subunits are present in the sperm flagellar mid-piece of sperm and possibly exist as alpha3alpha5beta4 and/or alpha3beta4 channels. The alpha9 subunit is present in the sperm mid-piece. We detected the FYN and c-SRC tyrosine kinases in the flagellar mid-piece region. Both co-precipitated only with the nicotinic acetylcholine receptor beta4 subunit. Immunolocalization with a C-terminal SRC kinase antibody, which recognizes several members of SRC kinase family, detected a SRC kinase co-localized with the alpha7 subunit in the neck region of sperm. Immunoprecipitation studies with that antibody demonstrated that the alpha7 subunit is associated with a SRC kinase. Antagonists of tyrosine phosphorylation inhibited the acetylcholine-initiated acrosome reaction, suggesting the involvement of a SRC kinase in the acrosome reaction.  相似文献   

12.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

13.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   

14.
The ric-3 gene is required for maturation of nicotinic acetylcholine receptors in Caenorhabditis elegans. The human homolog of RIC-3, hRIC-3, enhances expression of alpha7 nicotinic receptors in Xenopus laevis oocytes, whereas it totally abolishes expression of alpha4beta2 nicotinic and 5-HT3 serotonergic receptors. Both the N-terminal region of hRIC-3, which contains two transmembrane segments, and the C-terminal region are needed for these differential effects. hRIC-3 inhibits receptor expression by hindering export of mature receptors to the cell membrane. By using chimeric proteins made of alpha7 and 5-HT3 receptors, we have shown that the presence of an extracellular isoleucine close to the first transmembrane receptor fragment is responsible for the transport arrest induced by hRIC-3. Enhancement of alpha7 receptor expression occurs, at least, at two levels: by increasing the number of mature receptors and facilitating its transport to the membrane. Certain amino acids of a putative amphipathic helix present at the large cytoplasmic region of the alpha7 subunit are required for these actions. Therefore, hRIC-3 can act as a specific regulator of receptor expression at different levels.  相似文献   

15.
Insulin receptors purified from human placental membranes by gel-filtration and insulin-agarose affinity chromatography were found to be composed of eight different high molecular weight complexes as identified by nonreducing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The subunit stoichiometry of these different high molecular weight forms of the insulin receptor were determined by comparisons of silver-stained gel profiles with the autoradiograms of 125I-insulin specifically cross-linked to the alpha subunit and [gamma-32P]ATP specifically autophosphorylated beta subunit gel profiles. Two-dimensional SDS-polyacrylamide gel electrophoresis in the absence and presence of reductant confirmed the subunit stoichiometries as alpha 2 beta 2, alpha 2 beta beta 1, alpha 2 (beta 1)2, alpha 2 beta, alpha 2 beta 1, alpha 2, alpha beta, and beta, where alpha is the Mr = 130,000 subunit, beta is the Mr = 95,000 subunit, and beta 1 is the Mr = 45,000 subunit. Treatment of the insulin receptor preparations with oxidized glutathione or N-ethylmaleimide prior to SDS-polyacrylamide gel electrophoresis increased the relative amount of the alpha 2 beta 2 complex concomitant with a total disappearance of the alpha 2 beta, alpha 2 beta 1, alpha 2, and free beta forms. The effects of oxidized glutathione were found to be completely reversible upon extensive washing of the treated insulin receptors. In contrast, the effects of N-ethylmaleimide were totally irreversible by washing, consistent with known sulfhydryl alkylating properties of this reagent. The formation of these lower molecular weight insulin receptor subunit complexes was further demonstrated to be due to SDS/heat-dependent intramolecular sulfhydryl-disulfide exchange occurring within the alpha 2 beta 2 complex. These studies demonstrate that the largest disulfide-linked complex (alpha 2 beta 2) is the predominant insulin receptor form purified from the human placenta with the other complexes being generated by proteolysis and by internal subunit dissociation.  相似文献   

16.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

17.
The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the alpha-subunit of nicotinic acetylcholine receptors and in particular the homomeric alpha7 nicotinic receptor. We report the isolation and characterization of an alpha-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the alpha7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the alpha3beta2 nAChR indicating that alpha-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of alpha3beta2 nAChRs. alpha-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first alpha-conotoxin with higher affinity for the closely related receptor subtypes, alpha3beta2 versus alpha6beta2, and selectively blocks these two subtypes when compared with alpha2beta2, alpha4beta2, and alpha1beta1deltaepsilon nAChRs.  相似文献   

18.
The central nervous system of Drosophila melanogaster contains an alpha-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 M sodium chloride and then purified using an alpha-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 micromol of 125I-alpha-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-alpha-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s(20,w) of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila D alpha5 subunit by sequence comparison. A peptide-specific antibody raised against the D alpha5 subunit provides further evidence that this subunit is a component of an alpha-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila.  相似文献   

19.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

20.
The extracellular domains (ECDs) of human nicotinic acetylcholine receptors (nAChRs) are of major pharmacological interest as drug targets in the autoimmune disease myasthenia gravis and in various neurological disorders. We have previously expressed and purified the human muscle alpha1-, beta1-, gamma- and epsilon-nAChR-ECDs, as well as the wild type and a mutant of neuronal alpha7-ECD, in yeast Pichia pastoris. The far-UV circular dichroism (CD) studies of these ECDs, presented here, revealed a major prevalence of beta-sheet ( approximately 40%) and a small proportion of alpha-helical ( approximately 5%) structure for all ECDs, in good agreement with the secondary structure composition of the Torpedo muscle-type nAChR-ECDs and in less, but considerable, agreement with that of the homologous invertebrate acetylcholine-binding proteins (AChBPs). The near-UV CD studies of these nAChR-ECDs indicated well-defined tertiary structures, as was previously suggested by biochemical and immunochemical studies. Furthermore, the binding of cholinergic ligands to the mutant of alpha7-ECD resulted in no changes in its secondary structure, but revealed significant local conformational changes. Our present studies probe the structure of human nAChR-ECDs for the first time and further suggest that our expressed proteins fold to a near-native conformation, thus being suitable for further structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号