首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies.  相似文献   

2.
Vinculin binds to multiple focal adhesion and cytoskeletal proteins and has been implicated in transmitting mechanical forces between the actin cytoskeleton and integrins or cadherins. It remains unclear to what extent the mechano-coupling function of vinculin also involves signaling mechanisms. We report the effect of vinculin and its head and tail domains on force transfer across cell adhesions and the generation of contractile forces. The creep modulus and the adhesion forces of F9 mouse embryonic carcinoma cells (wild-type), vinculin knock-out cells (vinculin −/−), and vinculin −/− cells expressing either the vinculin head domain, tail domain, or full-length vinculin (rescue) were measured using magnetic tweezers on fibronectin-coated super-paramagnetic beads. Forces of up to 10 nN were applied to the beads. Vinculin −/− cells and tail cells showed a slightly higher incidence of bead detachment at large forces. Compared to wild-type, cell stiffness was reduced in vinculin −/− and head cells and was restored in tail and rescue cells. In all cell lines, the cell stiffness increased by a factor of 1.3 for each doubling in force. The power-law exponent of the creep modulus was force-independent and did not differ between cell lines. Importantly, cell tractions due to contractile forces were suppressed markedly in vinculin −/− and head cells, whereas tail cells generated tractions similar to the wild-type and rescue cells. These data demonstrate that vinculin contributes to the mechanical stability under large external forces by regulating contractile stress generation. Furthermore, the regulatory function resides in the tail domain of vinculin containing the paxillin-binding site.  相似文献   

3.
Strong, actomyosin-dependent, pinching tractions in steadily locomoting (gliding) fish keratocytes revealed by traction imaging present a paradox, since only forces perpendicular to the direction of locomotion are apparent, leaving the actual propulsive forces unresolved. When keratocytes become transiently "stuck" by their trailing edge and adopt a fibroblast-like morphology, the tractions opposing locomotion are concentrated into the tail, leaving the active pinching and propulsive tractions clearly visible under the cell body. Stuck keratocytes can develop approximately 1 mdyn (10,000 pN) total propulsive thrust, originating in the wings of the cell. The leading lamella develops no detectable propulsive traction, even when the cell pulls on its transient tail anchorage. The separation of propulsive and adhesive tractions in the stuck phenotype leads to a mechanically consistent hypothesis that resolves the traction paradox for gliding keratocytes: the propulsive tractions driving locomotion are normally canceled by adhesive tractions resisting locomotion, leaving only the pinching tractions as a resultant. The resolution of the traction pattern into its components specifies conditions to be met for models of cytoskeletal force production, such as the dynamic network contraction model (Svitkina, T.M., A.B. Verkhovsky, K.M. McQuade, and G.G. Borisy. 1997. J. Cell Biol. 139:397-415). The traction pattern associated with cells undergoing sharp turns differs markedly from the normal pinching traction pattern, and can be accounted for by postulating an asymmetry in contractile activity of the opposed lateral wings of the cell.  相似文献   

4.
The malignancy of a tumor depends on the capability of cancer cells to metastasize. The process of metastasis involves cell invasion through connective tissue and transmigration through endothelial monolayers. The expression of the glycosylphosphatidylinositol-anchored receptor CD24 is increased in several tumor types and is consistently associated with increased metastasis formation in patients. Furthermore, the localization of β1-integrins in lipid rafts depends on CD24. Cell invasion is a fundamental biomechanical process and usually requires cell adhesion to the extracellular matrix (ECM) mainly through β1 heterodimeric integrin receptors. Here, we studied the invasion of A125 human lung cancer cells with different CD24 expression levels in three-dimensional ECMs. We hypothesized that CD24 expression increases cancer cell invasion through increased contractile forces. To analyze this, A125 cells (CD24 negative) were stably transfected with CD24 and sorted for high and low CD24 expression. The invasiveness of the CD24(high) and CD24(low) transfectants was determined in three-dimensional ECMs. The percentage of invasive cells and their invasion depth was increased in CD24(high) cells compared with CD24(low) cells. Knockdown of CD24 and of the β1-integrin subunit in CD24(high) cells decreased their invasiveness, indicating that the increased invasiveness is CD24- and β1-integrin subunit-dependent. Fourier transform traction microscopy revealed that the CD24(high) cells generated 5-fold higher contractile forces compared with CD24(low) cells. To analyze whether contractile forces are essential for CD24-facilitated cell invasion, we performed invasion assays in the presence of myosin light chain kinase inhibitor ML-7 as well as Rho kinase inhibitor Y27632. Cell invasiveness was reduced after addition of ML-7 and Y27632 in CD24(high) cells but not in CD24(neg) cells. Moreover, after addition of lysophosphatidic acid or calyculin A, an increase in pre-stress in CD24(neg) cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase or STAT3 strongly reduced the invasiveness of CD24(high) cells, slightly reduced that of CD24(low) cells, and did not alter the invasiveness of CD24(neg) cells. Taken together, these results suggest that CD24 enhances cell invasion through increased generation or transmission of contractile forces.  相似文献   

5.
We find that in contrast to strongly adherent, slow moving cells such as fibroblasts, neutrophils exert contractile stresses largely in the rear of the cell (uropod) relative to the direction of motion. Rather than the leading edge pulling the cell, the rear is both anchoring the cell and the area in which the contractile forces are concentrated. These tractions rapidly reorient themselves during a turn, on a timescale of seconds to minutes, and their repositioning precedes and sets the direction of motion during a turn. We find the total average root mean-squared traction force to be 28+/-10 nN during chemokinesis, and 67+/-10 nN during chemotaxis. We hypothesize that the contraction forces in the back of the neutrophil not only break uropodial adhesive contacts but also create a rearward squeezing contractility, as seen in amoeboid or amoeboidlike cells and the formation of blebs in cells, causing a flow of intracellular material to the fluidlike lamellipod. Our findings suggest an entirely new model of neutrophil locomotion.  相似文献   

6.
The stress fiber network within contractile fibroblasts structurally reinforces and provides tension, or "tone", to tissues such as those found in healing wounds. Stress fibers have previously been observed to polymerize in response to mechanical forces. We observed that, when stretched sufficiently, contractile fibroblasts diminished the mechanical tractions they exert on their environment through depolymerization of actin filaments then restored tissue tension and rebuilt actin stress fibers through staged Ca(++)-dependent processes. These staged Ca(++)-modulated contractions consisted of a rapid phase that ended less than a minute after stretching, a plateau of inactivity, and a final gradual phase that required several minutes to complete. Active contractile forces during recovery scaled with the degree of rebuilding of the actin cytoskeleton. This complementary action demonstrates a programmed regulatory mechanism that protects cells from excessive stretch through choreographed active mechanical and biochemical healing responses.  相似文献   

7.
The amount of intramuscular connective tissue (IMCT) and its morphological distribution is highly variable between muscles of differing function. The functional roles of this component of muscle have been poorly understood, but a picture is gradually emerging of the central role this component has in growth, transmission of mechanical signals to muscle cells and co-ordination of forces between fibres within a muscle. The aim of this review is to highlight recent advances that begin to show the functional significance of some of the variability in IMCT. IMCT has a number of clearly defined roles. It patterns muscle development and innervation, and mechanically integrates the tissue. In developing muscles, proliferation and growth of muscle cells is stimulated and guided by cell-matrix interactions. Recent work has shown that the topography of collagen fibres is an important signal. The timing and rates of expression of connective tissue proteins also show differences between muscles. Discussion of mechanical roles for IMCT has traditionally been limited to the passive elastic response of muscle. However, it is now clear that IMCT provides a matrix to integrate the contractile function of the whole tissue. Mechanical forces are co-ordinated and passed between adjacent muscle cells via cell-matrix interactions and the endomysial connective tissue that links the cells together. An emerging concept is that division of a muscle into fascicles by the perimysial connective tissue is related to the need to accommodate shear strains as muscles change shape during contraction and extension.  相似文献   

8.
Reticular meshwork of the spleen in rats studied by electron microscopy   总被引:2,自引:0,他引:2  
The reticular meshwork of the rat spleen, which consists of both fibrous and cellular reticula, was investigated by transmission electron microscopy. The fibrous reticulum of the splenic pulp is composed of reticular fibers and basement membranes of the sinuses. These reticular fibers and basement membranes are continuous with each other. The reticular fibers are enfolded by reticular cells and are composed of two basic elements: 1) peripheral basal laminae of the reticular cells, and 2) central connective tissue spaces in which microfibrils, collagenous fibrils, elastic fibers, and unmyelinated adrenergic nerve fibers are present. The basement membranes of the sinuses are sandwiched between reticular cells and sinus endothelial cells and are composed of lamina-densalike material, microfibrils, collagenous fibrils, and elastic fibers. The presence of these connective tissue fibrous components indicates that there are connective tissue spaces in these basement membranes. The basement membrane is divided into three parts: the basal lamina of the reticular cell, the connective tissue space, and the basal lamina of the sinus endothelial cell. When the connective tissue space is very small or absent, the two basal laminae may fuse to form a single, thick basement membrane of the splenic sinus wall. The fibrous reticulum having these structures is responsible for support (collagenous fibrils) and rebounding (elastic fibers). The cells of the cellular reticulum--reticular cells and their cytoplasmic processes, which possess abundant contractile microfilaments, dense bodies, hemidesmosomes, basal laminae, and a well-developed, rough-surfaced endoplasmic reticulum, and Golgi complexes, which are characteristic of both fibroblasts and smooth muscle cells--are considered to be myofibroblasts. They may play roles in splenic contraction and in fibrogenesis of the fibrous reticulum. The contractile ability may be influenced by the unmyelinated adrenergic nerve fibers that pass through the reticular fibers. The three-dimensional reticular meshwork of the spleen consists of sustentacular fibrous reticulum and contractile myofibroblastic cellular reticulum. This meshwork not only supports the organ but also contributes to a contractile mechanism in circulation regulation, in collaboration with major contractile elements in the capsulo-trabecular system.  相似文献   

9.
Embryonic development involves global changes in tissue shape and architecture that are driven by cell shape changes and rearrangements within cohesive cell sheets. Morphogenetic changes at the cell and tissue level require that cells generate forces and that these forces are transmitted between the cells of a coherent tissue. Contractile forces generated by the actin-myosin cytoskeleton are critical for morphogenesis, but the cellular and molecular mechanisms of contraction have been elusive for many cell shape changes and movements. Recent studies that have combined live imaging with computational and biophysical approaches have provided new insights into how contractile forces are generated and coordinated between cells and tissues. In this review, we discuss our current understanding of the mechanical forces that shape cells, tissues, and embryos, emphasizing the different modes of actomyosin contraction that generate various temporal and spatial patterns of force generation.  相似文献   

10.
Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal-amoeboid-like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.  相似文献   

11.
Mechanical forces play an important role in various cellular functions, such as tumor metastasis, embryonic development or tissue formation. Cell migration involves dynamics of adhesive processes and cytoskeleton remodelling, leading to traction forces between the cells and their surrounding extracellular medium. To study these mechanical forces, a number of methods have been developed to calculate tractions at the interface between the cell and the substrate by tracking the displacements of beads or microfabricated markers embedded in continuous deformable gels. These studies have provided the first reliable estimation of the traction forces under individual migrating cells. We have developed a new force sensor made of a dense array of soft micron-size pillars microfabricated using microelectronics techniques. This approach uses elastomeric substrates that are micropatterned by using a combination of hard and soft lithography. Traction forces are determined in real time by analyzing the deflections of each micropillar with an optical microscope. Indeed, the deflection is directly proportional to the force in the linear regime of small deformations. Epithelial cells are cultured on our substrates coated with extracellular matrix protein. First, we have characterized temporal and spatial distributions of traction forces of a cellular assembly. Forces are found to depend on their relative position in the monolayer : the strongest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. Consequently, these forces are quantified and correlated with the adhesion/scattering processes of the cells.  相似文献   

12.
The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.  相似文献   

13.
The cooperation between epithelial and mesenchymal cells is essential for embryonic development and probably plays an important role in pathological phenomena such as wound healing and tumor progression. It is well known that many epithelial tumors are characterized by the local accumulation of connective tissue cells and extracellular material; this phenomenon has been called the stroma reaction. One of the cellular components of the stroma reaction is the myofibroblast, a modulated fibroblast which has acquired the capacity to neoexpress alpha-smooth muscle actin, the actin isoform typical of vascular smooth muscle cells, and to synthesize important amounts of collagen and other extracellular matrix components. It is now well accepted that the myofibroblast is a key cell for the connective tissue remodeling which takes place during wound healing and fibrosis development. Myofibroblasts are capable of remodeling connective tissue but also interact with epithelial cells and other connective tissue cells and may thus control such phenomena as tumor invasion and angiogenesis. In this review we discuss the mechanisms of myofibroblast evolution during fibrotic and malignant conditions and the interaction of myofibroblasts with other cells in order to control tumor progression. On this basis we suggest that the myofibroblast may represent a new important target of antitumor therapy.  相似文献   

14.
Summary The fine structure of the tentacles of the articulate brachiopod Terebratalia transversa has been studied by light and electron microscopy. The epidermis consists of a simple epithelium that is ciliated in frontal and paired latero-frontal or latero-abfrontal longitudinal tracts. Bundles of unsheathed nerve fibers extend longitudinally between the bases of the frontal epidermal cells and appear to end on the connective tissue cylinder; no myoneural junctions were found. The acellular connective tissue cylinder in each tentacle is composed of orthogonal arrays of collagen fibrils embedded in an amorphous matrix. Baffles of parallel crimped collagen fibrils traverse the connective tissue cylinder in regions where it buckles during flexion of the tentacle.The tentacular peritoneum consists of four cell types: 1) common peritoneal cells that line the lateral walls of the coelomic canal, 2) striated and 3) smooth myoepithelial cells that extend along the frontal and abfrontal sides of the coelomic canal, and 4) squamous smooth myoepithelial cells that comprise the tentacular blood channel.Experimental manipulations of a tentacle indicate that its movements are effected by the interaction of the tentacular contractile apparatus and the resilience of the supportive connective tissue cylinder. The frontal contractile bundle is composed of a central group of striated fibers and two lateral groups of smooth fibers which function to flex the tentacle and to hold it down, respectively. The small abfrontal group of smooth myoepithelial cells effects the re-extension of the tentacle, in conjunction with the passive resiliency of the connective tissue cylinder and the concomitant relaxation of the frontal contractile bundle.The authors wish to express their appreciation to Professor Robert L. Fernald for his advice and encouragement throughout the course of this study. Some of the work was conducted at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows, for use of the facilities. Part of this study was supported by NIH Developmental Biology Training Grant No. 5-T01-HD00266 and NSF grant BMS 7507689  相似文献   

15.
The nephridial muscle layer of Phascolosoma granulatum consists of a network of longitudinal and circular cells separated by connective tissue matrix. The muscle fibers are densely packed with thick and thin myofilaments, among which are scattered cytoplasmic dense bodies. The nucleus and noncontractile cytoplasmic organelles occupy a lateral projection from the contractile portion of the fiber. Cytoplasmic dense bodies are the result of a clustering of an indeterminate number of the thin actin filaments that fill the cytoplasm between thick filaments. Attached to the cytoplasmic face of the cell membrane are membrane-associated electron-dense plaques. These sites are linked to the contractile myofilaments by narrow filamentous bridges. Extracellular narrow filaments extend from these plaques to collagen fibers of the connective tissue matrix. Differences in length of the dense plaques may be related to differences in thick myofilament diameter in three types of muscle fiber, types A, B and C, statistically distinguished by mean fiber size differences. The plaques may serve as connecting links for the transmission of tension from contractile units to the connective tissue of the muscle layer. © 1993 Wiley-Liss, Inc.  相似文献   

16.
In this paper, a mathematical modeling framework is presented which describes the growth, encapsulation, and transcapsular spread of solid tumors. The model is based on the physical forces and cellular interactions involved in tumorigenesis and is used to test and compare the active (foreign body hypothesis) and passive (expansive growth hypothesis) hypotheses of capsule formation, such investigations being ideally suited to our mechanical model. The model simulations lead us to predict that, although an active response can successfully control tumor growth via the deposition of large amounts of collagen, this alone is insufficient for capsule formation. In contrast, a solely passive responsive is capable of producing an encapsulated tumor with minimal accumulation of connective tissue within the tumor. When both responses are active, a denser capsule forms and there is a significant increase in connective tissue within the tumor. Using a modified version of the model, in which tumor cells are assumed to produce degradative proteases at a rate which depends on the pressure they experience, it is also possible to show that transcapsular spread or invasion of the tumor may be due to the production by the tumor cells of proteases and their subsequent action.  相似文献   

17.
The process of cell migration is definied by biochemical and biophysical properties of the invading cells. Accelarated investigations in the field of biomechanics are of high impact regarding the process of the migration into a 3‐D matrix of tumor cells. In contrast to use of several protein markers that determine tumor malignancy, a single cell mechanical parameter may delevop as a reliable, standard tool for tumor diagnostics. The cell mechanics of living cells shed light on tumor disease especially on the process of metastasis that involves the invasion of tumor cells through connective tissue.  相似文献   

18.
Epithelial tissues represent 60% of the cells that form the human body and where more than 90% of all cancers derived. Epithelia transformation and migration involve altered cell contractile mechanics powered by an actomyosin-based cytoskeleton and influenced by cell-cell and cell-extracellular matrix interactions. A balance between contractile and adhesive forces regulates a large number of cellular and tissue properties crucial for epithelia migration and tumorigenesis. In this review, the forces driving normal epithelia transformation into highly motile and invasive cells and tissues will be discussed.  相似文献   

19.
The morphogenic response of anther walls and connective tissue is the greatest obstacle to androgenesis in soybean anther culture. Whereas induction to microspore embryogenesis occurs in the dark in almost all plant species, soybean anthers have been cultured under light. In an attempt to establish culture conditions that simultaneously stimulate microspore embryogenesis and inhibit epidermal and connective cell proliferation, the effect of light and two 2,4-dichlorophenoxyacetic acid (2,4-D) concentrations (2 and 10 mg l–1) on the induction process was investigated. Higher 2,4-D concentration speeded up microspore plasmolysis and did not improve androgenesis. Callogenesis and embryogenesis induction from sporophytic cells were significantly lower in the dark, and some microspores showed major alterations in the sporoderm. Auxin 2,4-D and induction under light contributed to the morphogenic response of the anther walls and connective tissue under the conditions previously recommended to trigger microspore embryogenesis.  相似文献   

20.
In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS). Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号