首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a recent model of beta-amyloid (Abeta) fibrils, based mainly on solid-state NMR data, a molecular layer consists of two beta-sheets (residues 12-23 and 31-40 of Abeta1-40), folded onto one another by a connecting "bend" structure (residues 25-29) in the side-chain dimension. In this paper, we use two N-methyl amino acids to disrupt each of the two beta-sheets individually (2NMe(NTerm), residues 17 and 19; and 2NMe(CTerm), residues 37 and 39), or both of them at the same time (4NMe, with the above four N-methylated residues). Our data indicate that incorporation of two N-methyl amino acids into one beta-sheet is sufficient to disrupt that sheet while leaving the other, unmodified beta-sheet intact and able to form fibrils. We show, however, that disruption of each of the two beta-sheets has strikingly different effects on fibrillogenesis kinetics and fibril morphology. Both 2NMe(NTerm) and 2NMe(CTerm) form fibrils at similar rates, but more slowly than that of unmodified Abeta1-40. Electron microscopy shows that 2NMe(NTerm) forms straight fibrils with fuzzy amorphous material coating the edges, while 2NMe(CTerm) forms very regular, highly twisted fibrils-in both cases, distinct from the morphology of Abeta1-40 fibrils. Both 2NMe peptides show a "CMC" approximately four times greater than that of Abeta1-40. CD spectra of these peptides also evolve differently in time: whereas the CD spectra of 2NMe(NTerm) evolve little over 10 days, those of 2NMe(CTerm) show a transition to high beta-sheet content at about day 4-5. We also show that disruption of both beta-sheet domains, as in 4NMe, prevents fibril formation altogether, and renders Abeta1-40 highly water soluble and monomeric, and with solvent-exposed side chains. In summary, our data show (1) that the two beta-sheet domains fold in a semiautonomous manner, since disrupting each one still allows the other to fold; (2) that disruption of the N-terminal beta-sheet has a more profound effect on fibrillogenesis than disruption of the C-terminal beta-sheet, suggesting that the former is the more critical for the overall structure of the fibril; and (3) that disruption of both beta-sheet domains renders the peptide monomeric and unable to form fibrils.  相似文献   

2.
A potential goal in the prevention or therapy of Alzheimer's disease is to decrease or eliminate neuritic plaques composed of fibrillar beta-amyloid (Abeta). In this paper we describe N-methyl amino acid containing congeners of the hydrophobic "core domain" of Abeta that inhibit the fibrillogenesis of full-length Abeta. These peptides also disassemble preformed fibrils of full-length Abeta. A key feature of the inhibitor peptides is that they contain N-methyl amino acids in alternating positions of the sequence. The most potent of these inhibitors, termed Abeta16-22m, has the sequence NH(2)-K(Me-L)V(Me-F)F(Me-A)E-CONH(2). In contrast, a peptide, NH(2)-KL(Me-V)(Me-F)(Me-F)(Me-A)-E-CONH(2), with N-methyl amino acids in consecutive order, is not a fibrillogenesis inhibitor. Another peptide containing alternating N-methyl amino acids but based on the sequence of a different fibril-forming protein, the human prion protein, is also not an inhibitor of Abeta40 fibrillogenesis. The nonmethylated version of the inhibitor peptide, NH(2)-KLVFFAE-CONH(2) (Abeta16-22), is a weak fibrillogenesis inhibitor. Perhaps contrary to expectations, the Abeta16-22m peptide is highly soluble in aqueous media, and concentrations in excess of 40 mg/mL can be obtained in buffers of physiological pH and ionic strength, compared to only 2 mg/mL for Abeta16-22. Analytical ultracentrifugation demonstrates that Abeta16-22m is monomeric in buffer solution. Whereas Abeta16-22 is susceptible to cleavage by chymotrypsin, the methylated inhibitor peptide Abeta16-22m is completely resistant to this protease. Circular dichroic spectroscopy of Abeta16-22m indicates that this peptide is a beta-strand, albeit with an unusual minimum at 226 nm. In summary, the inhibitor motif is that of alternating N-methyl and nonmethylated amino acids in a sequence critical for Abeta40 fibrillogenesis. These inhibitors appear to act by binding to growth sites of Abeta nuclei and/or fibrils and preventing the propagation of the network of hydrogen bonds that is essential for the formation of an extended beta-sheet fibril.  相似文献   

3.
Abeta fibrils, which are central to the pathology of Alzheimer's disease, form a cross-beta-structure that contains likely parallel beta-sheets with a salt bridge between residues Asp23 and Lys28. Recent studies suggest that soluble oligomers of amyloid peptides have neurotoxic effects in cell cultures, raising the interest in studying the structures of these intermediate forms. Here, we present three models of possible soluble Abeta forms based on the sequences similarities, assumed to support local structural similarities, of the Abeta peptide with fragments of three proteins (adhesin, Semliki Forest virus capsid protein, and transthyretin). These three models share a similar structure in the C-terminal region composed of two beta-strands connected by a loop, which contain the Asp23-Lys28 salt bridge. This segment is also structurally well conserved in Abeta fibril forms. Differences between the three monomeric models occur in the N-terminal region and in the C-terminal tail. These three models might sample some of the most stable conformers of the soluble Abeta peptide within oligomeric assemblies, which were modeled here in the form of dimers, trimers, tetramers, and hexamers. The consistency of these models is discussed with respect to available experimental and theoretical data.  相似文献   

4.
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease.  相似文献   

5.
We explore the relative contributions of different structural elements to the stability of Abeta fibrils by molecular-dynamics simulations performed over a broad range of temperatures (298 K to 398 K). Our fibril structures are based on solid-state nuclear magnetic resonance experiments of Abeta(1-40) peptides, with sheets of parallel beta-strands connected by loops and stabilized by interior salt bridges. We consider models with different interpeptide interfaces, and different staggering of the N- and C-terminal beta-strands along the fibril axis. Multiple 10-20 ns molecular-dynamics simulations show that fibril segments with 12 peptides are stable at ambient temperature. The different models converge toward an interdigitated side-chain packing, and present water channels solvating the interior D23/K28 salt bridges. At elevated temperatures, we observe the early phases of fibril dissociation as a loss of order in the hydrophilic loops connecting the two beta-strands, and in the solvent-exposed N-terminal beta-sheets. As the most dramatic structural change, we observe collective sliding of the N- and C-terminal beta-sheets on top of each other. The interior C-terminal beta-sheets in the hydrophobic core remain largely intact, indicating that their formation and stability is crucial to the dissociation/elongation and stability of Abeta fibrils.  相似文献   

6.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

7.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

8.
Several proteins and peptides that can convert from alpha-helical to beta-sheet conformation and form amyloid fibrils, including the amyloid beta-peptide (Abeta) and the prion protein, contain a discordant alpha-helix that is composed of residues that strongly favor beta-strand formation. In their native states, 37 of 38 discordant helices are now found to interact with other protein segments or with lipid membranes, but Abeta apparently lacks such interactions. The helical propensity of the Abeta discordant region (K16LVFFAED23) is increased by introducing V18A/F19A/F20A replacements, and this is associated with reduced fibril formation. Addition of the tripeptide KAD or phospho-L-serine likewise increases the alpha-helical content of Abeta(12-28) and reduces aggregation and fibril formation of Abeta(1-40), Abeta(12-28), Abeta(12-24), and Abeta(14-23). In contrast, tripeptides with all-neutral, all-acidic or all-basic side chains, as well as phosphoethanolamine, phosphocholine, and phosphoglycerol have no significant effects on Abeta secondary structure or fibril formation. These data suggest that in free Abeta, the discordant alpha-helix lacks stabilizing interactions (likely as a consequence of proteolytic removal from a membrane-associated precursor protein) and that stabilization of this helix can reduce fibril formation.  相似文献   

9.
Extensive data suggest that the conversion of the amyloid-beta (Abeta) peptide from soluble to insoluble forms is a key factor in the pathogenesis of Alzheimer's disease (AD). In recent years, atomic force microscopy (AFM) has provided useful insights into the physicochemical processes involving Abeta morphology, and it can now be used to explore factors that either inhibit or promote fibrillogenesis. We used ex situ AFM to explore the impact of anti-Abeta antibodies directed against different domains of Abeta on fibril formation. For the AFM studies, two monoclonal antibodies (m3D6 and m266.2) were incubated in solution with Abeta(1-42) with a molar ratio of 1:10 (antibody to Abeta) over several days. Fibril formation was analyzed quantitatively by determining the number of fibrils per microm(2) and by aggregate size analysis. m3D6, which is directed against an N-terminal domain of Abeta (amino acid residues 1-5) slowed down fibril formation. However, m266.2, which is directed against the central domain of Abeta (amino acid residues 13-28) appeared to completely prevent the formation of fibrils over the course of the experiment. Inhibition of fibril formation by both antibodies was also confirmed by thioflavin-T (ThT) fluorescence experiments carried out with Abeta(1-40) incubated for five days. However, unlike AFM results, ThT did not differentiate between the samples incubated with m3D6 versus m266.2. These results indicate that AFM can be not only reliably used to study the effect of different molecules on Abeta aggregation, but that it can provide additional information such as the role of epitope specificity of antibodies as potential inhibitors of fibril formation.  相似文献   

10.
Antzutkin ON  Leapman RD  Balbach JJ  Tycko R 《Biochemistry》2002,41(51):15436-15450
We describe electron microscopy (EM), scanning transmission electron microscopy (STEM), and solid-state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the 42-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1)(-)(42)) and by residues 10-35 of the full-length peptide (Abeta(10)(-)(35)). These measurements place constraints on the supramolecular structure of the amyloid fibrils, especially the type of beta-sheets present in the characteristic amyloid cross-beta structural motif and the assembly of these beta-sheets into a fibril. EM images of negatively stained Abeta(10)(-)(35) fibrils and measurements of fibril mass per length (MPL) by STEM show a strong dependence of fibril morphology and MPL on pH. Abeta(10)(-)(35) fibrils formed at pH 3.7 are single "protofilaments" with MPL equal to twice the value expected for a single cross-beta layer. Abeta(10)(-)(35) fibrils formed at pH 7.4 are apparently pairs of protofilaments or higher order bundles. EM and STEM data for Abeta(1)(-)(42) fibrils indicate that protofilaments with MPL equal to twice the value expected for a single cross-beta layer are also formed by Abeta(1)(-)(42) and that these protofilaments exist singly and in pairs at pH 7.4. Solid-state NMR measurements of intermolecular distances in Abeta(10)(-)(35) fibrils, using multiple-quantum (13)C NMR, (13)C-(13)C dipolar recoupling, and (15)N-(13)C dipolar recoupling techniques, support the in-register parallel beta-sheet organization previously established by Lynn, Meredith, Botto, and co-workers [Benzinger et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 13407-13412; Benzinger et al. (2000) Biochemistry 39, 3491-3499] and show that this beta-sheet organization is present at pH 3.7 as well as pH 7.4 despite the differences in fibril morphology and MPL. Solid-state NMR measurements of intermolecular distances in Abeta(1)(-)(42) fibrils, which represent the first NMR data on Abeta(1)(-)(42) fibrils, also indicate an in-register parallel beta-sheet organization. These results, along with previously reported data on Abeta(1)(-)(40) fibrils, suggest that the supramolecular structures of Abeta(10)(-)(35), Abeta(1)(-)(40), and Abeta(1)(-)(42) fibrils are quite similar. A schematic structural model of these fibrils, consistent with known experimental EM, STEM, and solid-state NMR data, is presented.  相似文献   

11.
Alzheimer disease is a neurodegenerative disorder that is tightly linked to the self-assembly and amyloid formation of the 39-43-residue-long amyloid-beta (Abeta) peptide. Considerable evidence suggests a correlation between Alzheimer disease development and the longer variants of the peptide, Abeta-(1-42/43). Currently, a molecular understanding for this behavior is lacking. In the present study, we have investigated the hydrogen/deuterium exchange of Abeta-(1-42) fibrils under physiological conditions, using solution NMR spectroscopy. The obtained residue-specific and quantitative map of the solvent protection within the Abeta-(1-42) fibril shows that there are two protected core regions, Glu11-Gly25 and Lys28-Ala42, and that the residues in between, Ser26 and Asn27, as well as those in the N terminus, Asp1-Tyr10, are solvent-accessible. This result reveals considerable discrepancies when compared with a previous investigation on Abeta-(1-40) fibrils and suggests that the additional residues in Abeta-(1-42), Ile41 and Ala42, significantly increase the solvent protection and stability of the C-terminal region Lys28-Ala42. Consequently, our findings provide a molecular explanation for the increased amyloidogenicity and toxicity of Abeta-(1-42) compared with shorter Abeta variants found in vivo.  相似文献   

12.
Pathogenic effects of D23N Iowa mutant amyloid beta -protein.   总被引:4,自引:0,他引:4  
Cerebral amyloid beta-protein angiopathy (CAA) is a key pathological feature of patients with Alzheimer's disease and certain related disorders. In these conditions the CAA is characterized by the deposition of Abeta within the cerebral vessel wall and, in severe cases, hemorrhagic stroke. Several mutations have been identified within the Abeta region of the Abeta protein precursor (AbetaPP) gene that appear to enhance the severity of CAA. We recently described a new mutation within the Abeta region (D23N) of AbetaPP that is associated with severe CAA in an Iowa kindred (Grabowski, T. J., Cho, H. S., Vonsattel, J. P. G., Rebeck, G. W., and Greenberg, S. M. (2001) Ann. Neurol. 49, 697-705). In the present study, we investigated the effect of this new D23N mutation on the processing of AbetaPP and the pathogenic properties of Abeta. Neither the D23N Iowa mutation nor the E22Q Dutch mutation affected the amyloidogenic processing of AbetaPP expressed in H4 cells. The A21G Flemish mutation, in contrast, resulted in a 2.3-fold increase in secreted Abeta peptide. We also tested synthetic wild-type and mutant Abeta40 peptides for fibrillogenesis and toxicity toward cultured human cerebrovascular smooth muscle (HCSM) cells. The E22Q Dutch, D23N Iowa, and E22Q,D23N Dutch/Iowa double mutant Abeta40 peptides rapidly assembled in solution to form fibrils, whereas wild-type and A21G Flemish Abeta40 peptides exhibited little fibril formation. Similarly, the E22Q Dutch and D23N Iowa Abeta40 peptides were found to induce robust pathologic responses in cultured HCSM cells, including elevated levels of cell-associated AbetaPP, proteolytic breakdown of smooth muscle cell alpha-actin, and cell death. Double mutant E22Q,D23N Dutch/Iowa Abeta40 was more potent than either single mutant form of Abeta in causing pathologic responses in HCSM cells. These data suggest that the different CAA mutations in AbetaPP may exert their pathogenic effects through different mechanisms. Whereas the A21G Flemish mutation appears to enhance Abeta production, the E22Q Dutch and D23N Iowa mutations enhance fibrillogenesis and the pathogenicity of Abeta toward HCSM cells.  相似文献   

13.
Our previous studies have demonstrated that perlecan and perlecan-derived glycosaminoglycans (GAGs) not only bind beta-amyloid protein (Abeta) 1-40 and 1-42, but are also potent enhancers of Abeta fibril formation and stabilize amyloid fibrils once formed. However, it was not determined which moieties in perlecan heparan sulfate GAG chains may be responsible for the observed effects and whether other GAGs were also capable of a similar enhancement of Abeta fibril formation as observed with perlecan GAGs. In the present study, thioflavin T fluorometry (over a 1-week period) was used to extend our previous studies and to test the hypothesis that the sulfate moiety is critical for the enhancing effects of heparin/heparan sulfate GAGs on Abeta 1-40 fibrillogenesis. This hypothesis was confirmed when removal of all sulfates from heparin (i.e., completely desulfated N-acetylated heparin) led to a complete loss in the enhancement of Abeta fibrillogenesis as demonstrated in both thioflavin T fluorometry and Congo red staining studies. On the other hand, removal of O-sulfate from heparin (i.e., completely desulfated N-sulfated heparin), and to a lesser extent N-sulfate (i.e., N-desulfated N-acetylated heparin), resulted in only a partial loss of the enhancement of Abeta 1-40 fibril formation. These studies indicate that the sulfate moieties of GAGs are critical for enhancement of Abeta amyloid fibril formation. In addition, other sulfated molecules such as chondroitin-4-sulfate, dermatan sulfate, dextran sulfate, and pentosan polysulfate all significantly enhanced (greater than twofold by 3 days) Abeta amyloid fibril formation. These latter findings indicate that deposition and accumulation of other GAGs at sites of Abeta amyloid deposition in Alzheimer's disease brain may also participate in the enhancement of Abeta amyloidosis.  相似文献   

14.
The cytotoxic beta-amyloid peptide (Abeta) of Alzheimer's disease (AD) occurs in both plasma and platelets and may modulate platelet function. Its biological activity may relate to its fibril content and factors that promote Abeta fibrillogenesis, e.g., plasma lipoproteins could, therefore, have implications for Abeta action. We undertook a study in which structure-activity relationships were considered with respect to the actions of Abeta(1-40) on platelet function. Thus, the influence of soluble Abeta and various fibrillar Abeta preparations (0.1-10 microM) on platelet aggregation and endogenous 5-hydroxytryptamine (5-HT) efflux was investigated. Soluble Abeta(1-40) only enhanced platelet aggregation (+30%, P<0.05) and 5-HT release (+28%) stimulated by ADP (1 microM) at the highest concentration tested (10 microM). By contrast, fibrillar Abeta(1-40) at 1, 5 and 10 microM potentiated aggregation by 17.4%, 68.8% (P<0.05) and 99.5% (P<0.0001), respectively, and 5-HT efflux by 17.4%, 65% and 208% (P<0.001). Abeta(1-40) fibrils generated in the presence of native and oxidised very low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) yielded platelet responses that did not differ from those seen with the lipoproteins alone. These responses were markedly lower than those obtained with homogeneous Abeta fibrils. Our data indicate that homogeneous Abeta(1-40) fibrils are more potent than soluble Abeta(1-40) in promoting platelet reactivity and that interactions with plasma lipoproteins result in the formation of Abeta fibrils that are ineffective. We suggest that lipoproteins may interfere with the recognition of Abeta by appropriate platelet receptors and/or cause Abeta to assume an "overaggregated" biologically inert state.  相似文献   

15.
Han W  Wu YD 《Proteins》2007,66(3):575-587
To study the early stage of amyloid-beta peptide (Abeta) aggregation, hexamers of the wild-type (WT) Abeta(16-35) and its mutants with amyloid-like conformations have been studied by molecular dynamics simulations in explicit water for a total time of 1.7 micros. We found that the amyloid-like structures in the WT oligomers are destabilized by the solvation of ionic D23/K28 residues, which are buried in the fibrils. This means that the desolvation of D23/K28 residues may contribute to the kinetic barrier of aggregation in the early stage. In the E22Q/D23N, D23N/K28Q, and E22Q/D23N/K28Q mutants, hydration becomes much less significant because the mutated residues have neutral amide side-chains. These amide side-chains can form linear cross-strand hydrogen bond chains, or "polar zippers", if dehydrated. These "polar zippers" increase the stability of the amyloid-like conformation, reducing the barrier for the early-stage oligomerization. This is in accord with experimental observations that both the D23/K28 lactamization and the E22Q/D23N mutation promote aggregation. We also found that the E22Q/D23N mutant prefers an amyloid-like conformation that differs from the one found for WT Abeta. This suggests that different amyloid structures may be formed under different conditions.  相似文献   

16.
The conformational states sampled by the Alzheimer amyloid beta (10-35) (Abeta 10-35) peptide were probed using replica-exchange molecular dynamics (REMD) simulations in explicit solvent. The Abeta 10-35 peptide is a fragment of the full-length Abeta 40/42 peptide that possesses many of the amyloidogenic properties of its full-length counterpart. Under physiological temperature and pressure, our simulations reveal that the Abeta 10-35 peptide does not possess a single unique folded state. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is dominated by random coil and bend structures with insignificant presence of an alpha-helical or beta-sheet structure. The 3D structure of Abeta 10-35 is seen to be defined by a salt bridge formed between the side-chains of K28 and D23. This salt bridge is also observed in Abeta fibrils and our simulations suggest that monomeric conformations of Abeta 10-35 contain pre-folded structural motifs that promote rapid aggregation of this peptide.  相似文献   

17.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

18.
Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.  相似文献   

19.
On the nucleation of amyloid beta-protein monomer folding   总被引:1,自引:0,他引:1  
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise.  相似文献   

20.
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号