首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of water stress on leaf polyamine content of fourHordeum vulgare varieties, Alger/Ceres, Palmella Blue, Rihaneand Roho, with different drought characters was studied After6 d without water Alger/Ceres, Palmella Blue and Rihane hadaccumulated putrescine, although only in concentrations up totwice those found in the controls, but Roho had a decreasedputrescine content. However, one common response was identified;the accumulation and subsequent loss of putrescine was dependentupon the maintenance and loss of leaf turgor respectively. Consequentlyvarietal differences in putrescine accumulation were relatedto water consumption rates and the extent of osmotic adjustment.Spermine behaved in a similar manner to putrescine but spermidinelevels always decreased. Polyamine levels were never high enoughto be an important component of solute accumulation. Prolinelevels were 150-fold higher and glycine-betaine levels 50-foldhigher than polyamines in stressed plants. Proline and glycine-betaineaccumulation occurred once a threshold turgor was reached, whichin Roho appeared to be a reduction by 0•2–0•25MPa or 30–40%. The importance of polyamine accumulationduring water stress is discussed. Key words: Hordeum vulgare, polyamine, water stress  相似文献   

2.
Indian mustard (Brassica juncea(L) Czernjacw) maintains higherleaf turgor than canola (B. napusL.) under water deficits andthis is related to the greater yield of mustard under theseconditions. The work reported in this paper was designed tostudy the way mustard maintains this turgor advantage. It wasbased on three field experiments that each used at least twocultivars or lines of each species. The leaf water potentialat which leaves reached zero turgor was consistently lower inmustard than in canola (up to 1.1 MPa lower). This differencearose from a greater rate of decline in leaf osmotic potentialwith declining water potential in mustard rather than from anydifference in the osmotic potential at full turgor. Calculationsof solute accumulation showed that mustard had a greater capacityto osmoregulate than canola, with this capacity being the basisfor its advantage in turgor maintenance. Other differences inplant water relations were consistent with the differences inosmoregulation, with the predicted relative water content ofleaves at an osmotic potential of -2.5 MPa being 0.43 for canolaand 0.61 for mustard. Mustard's greater capacity to accumulatesolutes is concluded to be a major factor in its greater yieldunder water deficits. Brassica napusL.; Brassica juncea(L) Czernjacw; Indian mustard; canola; water deficit; plant water relations; osmoregulation; osmotic adjustment; turgor  相似文献   

3.
Relationships between growth of osmotically stressed intact seedlings and polyribosome levels and water status of growing tissues were examined. Sudden exposure of barley (Hordeum vulgare L. cv. Arivat) roots to a solution of ?0.8 MPa polyethylene glycol caused leaf growth to stop almost immedately, but growth resumed at a much lower rate after 0.5–1 h. In the growing region of leaves, the polyribosome: total ribosome ratio of free (non-membrane-bound) ribosomes was significantly reduced after 15 min stress, but a decrease in the large polyribosome:total polyribosome ratio occurred only after 1–2 h. Membrane-bound and free polyribosome levels both decreased to 70% of unstressed control values after 4 h stress. Recovery of total polyribosomes occurred within 1 h after relief of 4 h stress, but required 3 h after relief of 24 h stress. Stress detectably reduced the water potential and osmotic potential of growing tissue within 0.5–1.0 h, and osmotic adjustment continued for up to 10 h. Recovery of water status was incomplete after 1 h relief of a 4 h stress. In contrast, expanded blade tissues of stressed plants underwent minor changes in water status and slow decreases in polyribosomes levels. These results confirm that growing tissues of barley leaves are selectively responsive to stress, and suggest that changes in growth, water status and polyribosome levels may be initiated by the same signal. Measurements of seedling growth, polyribosome levels and water status of growing tissues of barley and wheat (Triticum aestivum L. cv. Zaragoza) leaves, etiolated pea (Pisum sativum L. cv. Alaska) epicotyl and etiolated squash (Cucurbita pepo L. cv. Elite) hypocotyl stressed with polyethylene glycol solutions of ?0.3 to ?0.8 MPa for 12 h or more showed that polyribosome levels were highly correlated with seedling growth rate as well as with tissue water and osmotic potentials, while turgor remained unchanged. These results suggest that long-term growth of osmotically stressed plants may be limited by a reduced capacity for protein synthesis in growing tissues and is not dictated by turgor loss.  相似文献   

4.
A field experiment was conducted to investigate the effect ofK nutrition under water stress conditions on cell membrane stabilitymeasured by the polyethylene glycol test, plant growth, internalplant water relations and solute and mineral concentrationsin maize (Zea mays L.). Water-stressed plants showed greateradaptation to water deficits at higher K levels. Cell membranestability increased, leaf water potential and osmotic potentialdecreased, turgor potential increased and stomatal resistancedecreased with increasing K nutrition. Osmotic adjustment wasevident and it may have been influenced by increased K+ concentrationsin leaf tissues with increasing K nutrition. Higher leaf thicknessand higher leaf water content were observed at higher K levels.Results suggested that higher supplies of K nutrition may increaseplant production during periods of water stress. Key words: Zea mays L., cell membrane stability, leaf water potential, osmotic adjustment, osmotic potential, potassium nutrition, water stress  相似文献   

5.
Koroleva OA  Tomos AD  Farrar J  Pollock CJ 《Planta》2002,215(2):210-219
Pressure-probe measurements and single-cell sampling and analysis techniques were used to determine the effect of photosynthetic production and accumulation of sugars on osmotic and turgor pressures of individual cells of barley ( Hordeum vulgare L.) source leaves. In control plants, the changes in osmotic pressure in individual cells during the photoperiod were different for mesophyll (increase of 276 mOsmol/kg), parenchymatous bundle sheath (PBS; increase of 100 mOsmol/kg) and epidermis (remains constant). There was also an increase in osmotic pressure at the tissue level. Cooling of roots and the shoot apical meristem restricted the export of sugars from leaves, and the resulting changes in osmotic and turgor pressure were monitored. In contrast to the control leaves, mesophyll, PBS, and epidermal cells showed a similar increase in osmotic pressure (up to 500 mOsmol/kg). Cooling also increased the turgor pressure in epidermal and (to a greater extent) PBS cells. The difference in turgor pressure between epidermal and PBS cells is consistent with the presence of a water potential gradient within the leaf, from the vascular bundles towards the leaf surface.  相似文献   

6.
Osmotic adjustment in leaves of sorghum in response to water deficits   总被引:17,自引:12,他引:17       下载免费PDF全文
Jones MM 《Plant physiology》1978,61(1):122-126
The relationships among the total water potential, osmotic potential, turgor potential, and relative water content were determined for leaves of sorghum (Sorghum bicolor [L.] Moench cvs. `RS 610' and `Shallu') with three different histories of water stress. Plants were adequately watered (control), or the soil was allowed to dry slowly until the predawn leaf water potential reached either −0.4 megapascal (MPa) (treatment A) or −1.6 MPa (treatment B). Severe soil and plant water deficits developed sooner after cessation of watering in `Shallu' than in `RS 610', but no significant differences in osmotic adjustment or tissue water relations were observed between the two cultivars. In both cultivars, the stress treatments altered the relationship between leaf water potential and relative water content, resulting in the previously stressed plants maintaining higher tissue water contents than control plants at the same leaf water potential. The osmotic potential at full turgor in the control sorghum was −0.7 MPa: stress pretreatment significantly lowered the osmotic potential to −1.1 and −1.6 MPa in stress treatments A and B, respectively. As a result of this osmotic adjustment, leaf turgor potentials at a given value of leaf water potential exceeded those of the control plants by 0.15 to 0.30 MPa in treatment A and by 0.5 to 0.65 MPa in treatment B. However, zero turgor potential occurred at approximately the same value of relative water content (94%) irrespective of previous stress history. From the relationship between turgor potential and relative water content there was an approximate doubling of the volumetric elastic modulus, i.e. a halving of tissue elasticity, as a result of stress preconditioning. The influence of stress preconditioning on the moisture release curve is discussed.  相似文献   

7.
The changes in the internal water relations of soybean (Glycinemax L. Merr.) leaves during vegetative and reproductive growthwere studied by following the changes in the pressure-volumecurves of soybean leaves. The results demonstrate that soybeanleaves undergo a change in their osmotic properties which coincideswith the onset of active reproductive growth and is not inducedby water stress. The observed osmotic changes resulted in anincrease in the leaf relative water content at any given bulkleaf water potential. The volume of leaf water loss needed toreduce turgor potential to zero did not change following thischange in osmotic properties. The degree of turgor maintenanceafter the change in osmotic properties depended on the abilityto maintain adequate leaf relative water content. The observedchanges in bulk osmotic potential of the soybean leaves wouldcontribute to increased leaf-soil water potential gradientsand therefore to improved ability to extract the remaining soilwater as the season progressed.  相似文献   

8.
Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.

When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  相似文献   

9.
A field experiment was conducted with a non-irrigated waterstress treatment and an irrigated control using four sorghum(Sorghum bicolor L. Moench) cultivars. We investigated the effectsof water deficits on leaf water relations, osmotic adjustment,stomatal conductance, cuticular conductance, cell membrane stability(CMS) measured by the polyethylene glycol (PEG) test, epicuticularwax load (EWL), cytoplasmic lipid content, solute concentrationin cell sap, and growth. Osmotic adjustment was observed under water deficit conditions.Lower osmotic potential enabled plants to maintain turgor anddecreased the sensitivity of turgor-dependent processes. Sugarand K were identified as the major solutes contributing to osmoticpotential in sorghum. Sugar and K concentrations in cell sapincreased by 37·4% and 27%, respectively, under waterdeficit conditions in favour of decreasing osmotic potential.Stomatal conductance and cuticular conductance were lower inthe non-irrigated plants. A wide range in CMS among four cultivarswas observed. CMS increased with increasing water deficits.EWL increased on leaves of water deficient plants and was positivelycorrelated with cuticular conductance and CMS. Membrane phospholipidcontent increased in water-stressed plants. CMS as measured by the PEG test, was influenced by EWL, cuticularthickness, and osmotic concentration of leaf tissues. The cultivarswhich maintained higher CMS, higher EWL, lower cuticular conductance,higher turgor and higher osmotic adjustment under water deficitconditions were identified as drought tolerant. Key words: Sorghum bicolor, cell membrane stability, leaf water relationsosmotic adjustment, water stress  相似文献   

10.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

11.
The effects of leaf age on water relations, organic solute, and total ion accumulation were studied in mature and immature leaves of two-year-old grapevines (Vitis vinifera L., cv. Savatiano) grown under water stress conditions. Osmotic potential at full turgor decreased significantly in leaves of stressed plants, irrespective of leaf age, indicating the occurrence of an active osmotic adjustment. The apoplastic water fraction (A) increased during leaf ontogeny in both control and stressed plants. However, the values of A were lower in stressed plants. Starch concentration decreased significantly in both mature and immature leaves during the drought cycle, while the relative proportion of monosaccharides and sucrose was markedly different in immature leaves compared to mature. The accumulation of total inorganic ions, induced by drought, was also age dependent, increasing significantly with leaf age, while there were no significant differences in total amino acids content. Inorganic ions and carbohydrates seem to be the major component of osmotic adjustment in mature and immature grapevine leaves, respectively.  相似文献   

12.
The leaf elongation rate and osmotic pressure at full turgorof wheat (Triticum aestivum L.) and lupin (Lupinus cosentiniiGuss.) were measured in well watered plants, in plants thatwere allowed to dry the soil slowly over 7 d, and in plantsin which the water potential of the leaf xylem was maintainedhigh by applying pressure to the roots during the drying cycle.Maintenance of high xylem water potentials failed to preventa reduction in the rate of leaf elongation as the soil dried,while the osmotic pressure at full turgor and the degree ofosmotic adjustment increased as the soil water content decreased.The rate of leaf elongation was reduced more and the degreeof osmotic adjustment was higher in leaves with high xylem waterpotentials than in those in which leaf xylem potentials wereallowed to decrease as soil water content decreased. Osmoticadjustment was linearly correlated with the reduction in leafelongation rate in both wheat and lupin. Key words: Osmotic adjustment, leaf elongation, turgor regulation  相似文献   

13.
Parker, W. C. and Pallardy, S. G. 1987. The influence of resaturationmethod and tissue type on pressure-volume analysis of Quercusalba L. seedlings.—J. exp. Bot. 38: 535–549. The effect of resaturation method and amount of woody tissueon pressure-volume analysis was investigated using materialcollected from Quercus alba L. seedlings. Leaves excised fromwell-irrigated, intact plants had lower initial xylem pressurepotentials than did leaves resaturated by two artificial methods.Differential capacity for tissue rehydration among the threemethods was linked to shifts in the relative position of pressure-volumecurves, and differences in the osmotic potential and relativewater content at which turgor loss occurred were observed. Pressure-volumecurves from leaves resaturated by all three methods contained‘plateaus’ near full turgor, where xylem pressurepotential declined only slightly with relative water content.These plateaus were apparently associated with apoplastic waterthat accumulated in intercellular spaces of the leaf near fullturgidity, and acted to buffer changes in leaf xylem pressurepotential as tissues dehydrated. The presence of this waterhas implications for derived water relations parameter estimates.Pressure-volume curves for excised shoots also exhibited plateaus,but the relationship between xylem pressure potential and relativewater content over this region was steeper than was found forleaves. Shoot osmotic potentials were somewhat lower than thosefor leaves. The slope of the linear portion of shoot pressure-volumecurves was more shallow than for single leaves, a response associatedwith comparatively lower values of the symplastic water fractionin shoots. Key words: Pressure-volume curve, tissue-water relations, elasticity  相似文献   

14.
The tepary bean ( Phaseolus acutifolius Gray var. latifolius ), a drought resistant species, was compared under water stress conditions with the more drought susceptible P. vulgaris L. cvs Pinto and White Half Runner (WHR). In order to better understand the basis for the superior drought resistance of tepary, this study was designed to determine the relationships among leaf water potential, osmotic potential, turgor potential, and relative water content (RWC).
Plants were prestressed by withholding irrigation water. These stress pretreatments changed the relation between leaf water potential and relative water content of both species so that prestressed plants had lower water potentials than controls at the same leaf RWC. Tepary had lower water potentials at given RWC levels than Pinto or WHR; this can account for part of the superior resistance of tepary. In all genotypes, prestressed plants maintained osmotic potentials approximately 0.2 MPa lower than controls. Tepary reached osmotic potentials that were significantly lower (0.15 to 0.25 MPa) than Pinto or WHR. Both control and prestressed tepary plants had 0.05 to 0.25 MPa more turgor than Pinto or WHR at RWC values between 65 and 80%. Both prestressed and control tepary plants had greater elasticity (a lower elastic modulus) than Pinto or WHR. This greater turgor of tepary at low RWC values could be caused by several factors including greater tissue elasticity, active accumulation of solutes, or greater solute concentration.
Tepary had significantly lower osmotic potentials than the P. vulgaris cultivars, but there was little difference in osmotic potential between Pinto and WHR. Knowledge of differences in osmotic and turgor potentials among and within species could be useful in breeding for drought resistance in Phaseolus.  相似文献   

15.
Osmotic Adjustment and Stomatal Response to Water Deficits in Maize   总被引:1,自引:1,他引:0  
A pot experiment was carried out using five maize {Zea maysL.) cultivars under three soil moisture levels (MPa 0 to –0.05,–0.3 to –0.9 and –1.2 to –1.5) to investigatethe effects of water deficits on osmotic adjustment and stomatalconductance. The degree of leaf rolling and the sugar and nutrientconcentrations in leaf cell sap were measured. Leaf water potential and osmotic potential decreased and stomatalconductance decreased with increasing water deficits. Stomatalconductance correlated positively with leaf water potentialand osmotic potential. Degree of leaf rolling was lower in cultivarswhich maintained higher turgor. Osmotic adjustment of 0.08 to0.43 MPa was found under the lowest soil moisture level in fivecultivars used. Sugar and K were the major osmotic substancesin the maize plant. Sugar, K and Mg concentrations increasedunder water deficit, and correlated negatively with a decreasein osmotic potential. Key words: Zea mays L., leaf water relations, leaf rolling, osmotic adjustment, stomatal conductance, water deficit  相似文献   

16.
The design of a simple instrument to monitor leaf expansionin grasses is described. The instrument was used to comparethe effects of water stress on leaf extension of two cultivarsof maize and sorghum. The effect of withholding water for 3days was an appreciable reduction in the rate of leaf expansionin both plants, particularly during the light period. In well-wateredplants of both species, leaf extension continued at a steadyrate even when leaf turgor fell to around 0.1 MPa. In water-stressedmaize plants, leaf turgor during the light period fell to zeroand leaf growth ceased. When turgor was restored, followingstomatal closure, leaf extension resumed at a slow rate. Inunwatered sorghum plants, leaf turgor remained at a value greaterthan 0.1 MPa but the rate of leaf extension was significantlyreduced. The reduction in leaf turgor in the unwanted plantsresulted partly from an increase in solute potential. Zea mays L, maize, Sorghum bicolor L, leaf expansion, leaf turgor, water stress  相似文献   

17.
RENARD  C.; FRANCOIS  J. 《Annals of botany》1985,55(6):869-879
The effects of increasing water stress on water relations, leafconductance, leaf extension and leaf rolling of Festuca arundinaceain sward (I m2) were investigated under wind tunnel conditions.The plants were grown in a container 60 cm deep and the experimentwas conducted over a 36 d period. Upon cessation of watering(day 11), leaf extension and conductance were affected. Within8 d, the onset of leaf rolling helped to reduce transpirationand to maintain leaf water potential. Nocturnal recovery of turgor potential helped in maintainingleaf extension at a moderate level and in the final 5 d waterand osmotic potentials dropped sharply as leaf rolling becamemore acute and leaf extension stopped. The grass combines various morphological and physiological mechanismsto prevent water losses and maintain growth. Festuca arundinacea, tall fescue, wind tunnel, water stress, water potential, osmotic potential, conductance, leaf rolling, leaf extension  相似文献   

18.
Growth rates of seasonal leaf flushes of ‘Valencia’orange [Citrus sinensis (L.) Osbeck] were measured and waterrelations characteristics of young (new) and over-wintered (old)citrus leaves were compared. New flush leaves had lower specificleaf weights and lower midday leaf water potentials than comparablyexposed old leaves. Spring and summer flush new leaves had higherosmotic potentials than old leaves. These differences becamenon-significant as the new leaves matured. During summer conditions,water-stressed new leaves reached zero turgor and stomatal conductancealso began to decrease in them at higher leaf water potentialsthan in old leaves. Old leaves were capable of maintaining openstomata at lower leaf water potentials. Opened flowers and newflush leaves lost more water, on a dry weight basis, than flowerbuds, fruit or mature leaves. The results illustrate differencesin leaf water potential and stomatal conductance which can beattributed to the maintenance of leaf turgor by decreases inleaf osmotic potentials as leaves mature. These changes in citrusleaf water relations are especially important since water stressresulting from high water loss rates of new tissues could reduceflowering and fruit set. Citrus sinensis (L.) Osbeck, orange, Citrus paradisi Macf., grapefruit, growth rate, leaf water relations, osmotic potential, water potential, stomatal conductance  相似文献   

19.
Differences in Osmoregulation in Brassica species   总被引:1,自引:0,他引:1  
Brassica carinata L (cv Carinata-2) and Brassica napus L (cvHNS-3) were tested for osmoregulation under three sets of environmentsOsmoregulation was found to vary markedly between two species,with the cv Carinata-2 having a greater degree of osmoregulationthan the cv HNS-3 Furthermore, the differences in osmoregulationwere related to leaf diffusive conductance and grain yield inBrassica species Thus, it has potential use as a selection criterionin Brassicas Brassica carinata L, Brassica napus L, osmoregulation, relative water content, leaf water potential, turgor potential, osmotic potential, leaf temperature, leaf diffusive conductance  相似文献   

20.
Metabolism of abscisic acid (ABA) was studied after wilting and upon recovery from water stress in individual, detached leaves of Phaseolus vulgaris L. (red kidney bean). Loss of turgor was correlated with accumulation of ABA and its metabolites, resulting in a 10-fold increase in the level of phaseic acid (PA) and a doubling of the level of conjugated ABA. The level of conjugated ABA in turgid leaves was no higher than that of the free acid. These results indicate that accumulation of ABA in wilted leaves resulted from a stimulation of ABA synthesis, rather than from a release from a conjugated form or from inhibition of the metabolism of ABA. The rate of synthesis of ABA was at its maximum between 2.5 and 5 h after turgor was lost, and slackened there-after. In wilted leaves, the rate of conversion of ABA to PA climbed steadly until it matched the rate of synthesis, after about 7.5 h. Upon rehydration of sections from wilted leaves, the rate of synthesis of ABA dropped close to zero within about 3 h, while the rate of conversion to PA accelerated. Formation of PA was two to four times faster than in sections maintained in the wilted condition; it reached a rate sufficient to convert almost one-half of the ABA present in the tissue to PA within 1 h. In contrast, the alternate route of metabolism of ABA, synthesis of conjugated ABA, was not stimulated by rehydration. The role of turgor in the stimulation of the conversion of ABA to PA was investigated. When leaves that had been wilted for 5 h were rehydrated to different degrees, the amount of ABA which disappeared, or that of PA which accumulated during the next 3 h, did not depend linearly on the water potential of the rehydrated leaf. Rather, re-establishment of the slightest positive turgor was sufficient to result in maximum stimulation of conversion of ABA to PA.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - PA phaseic acid - leaf leaf water potential - osmotic pressure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号