首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.  相似文献   

2.
The plant secretory and endocytic pathways consist of several functionally distinct membrane-bounded compartments. The ultra structures of the endoplasmic reticulum, the Golgi apparatus, and central vacuoles have been well characterized via traditional structural electron microscope (EM). However, the identification of plant prevacuolar compartments (PVCs) and early endosomes (EEs) had not been achieved until more recently because of the lack of specific markers for these organelles. Recent development of fluorescent reporters for PVCs and EEs expressing in transgenic tobacco BY-2 cells and Arabidopsis plants has allowed their dynamic characterization in living cells via confocal microscopy and drug treatment, which led to their subsequent morphological identification via structural and immunogold EM. Thus, in this review, we will use our studies on PVCs and EEs as examples to present an efficient approach for organelle identification in plant cells via primary characterization of fluorescent-marked organelles in living cells and their dynamic response to drug treatments, which then serves as the basis for subsequent immunogold and structural EM studies for organelle identification. Such strategy thus represents a powerful approach in future research for the identification of novel organelles and transport vesicles in plant cells.  相似文献   

3.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

4.
Miao Y  Yan PK  Kim H  Hwang I  Jiang L 《Plant physiology》2006,142(3):945-962
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.  相似文献   

5.
Tse YC  Lo SW  Hillmer S  Dupree P  Jiang L 《Plant physiology》2006,142(4):1442-1459
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5-10 microg mL(-1)) induced YFP-marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and BFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50-100 microg mL(-1)) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immunofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells.  相似文献   

6.
Secretory proteins and extracellular glycans are transported to the extracellular space during cell growth. These materials are carried in secretory vesicles generated at the trans-Golgi network (TGN). Analysis of the mammalian post-Golgi secretory pathway demonstrated the movement of separated secretory vesicles in the cell. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco (Nicotiana tabacum) BY-2 cell as a model cell, we characterized the transport machinery in plant cells. A combination of analyses, including electron microscopy of quick-frozen cells and four-dimensional analysis of cells expressing fluorescent-tagged SCAMP2, enabled the identification of a clustered structure of secretory vesicles generated from TGN that moves in the cell and eventually fuses with plasma membrane. This structure was termed the secretory vesicle cluster (SVC). The SVC was also found in Arabidopsis thaliana and rice (Oryza sativa) cells and moved to the cell plate in dividing tobacco cells. Thus, the SVC is a motile structure involved in mass transport from the Golgi to the plasma membrane and cell plate in plant cells.  相似文献   

7.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

8.
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.  相似文献   

9.
Prevacuolar compartments (PVCs) are membrane-bound organelles that mediate protein traffic between Golgi and vacuoles in the plant secretory pathway. Here we identify and define organelles as the lytic prevacuolar compartments in pea and tobacco cells using confocal immunofluorescence. We use five different antibodies specific for a vacuolar sorting receptor (VSR) BP-80 and its homologs to detect the location of VSR proteins. In addition, we use well-established Golgi-markers to identify Golgi organelles. We further compare VSR-labeled organelles to Golgi organelles so that the relative proportion of VSR proteins in Golgi vs. PVCs can be quantitated. More than 90% of the BP-80-marked organelles are separate from Golgi organelles; thus, BP-80 and its homologs are predominantly concentrated on the lytic PVCs. Additionally, organelles marked by anti-AtPep12p (AtSYP21p) and anti-AtELP antibodies are also largely separate from Golgi apparatus, whereas VSR and AtPep12p (AtSYP21p) were largely colocalized. We have thus demonstrated in plant cells that VSR proteins are predominantly present in the lytic PVCs and have provided additional markers for defining plant PVCs using confocal immunofluorescence. Additionally, our approach will provide a rapid comparison between markers to quantitate protein distribution among various organelles.  相似文献   

10.
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.  相似文献   

11.
Wang J  Ding Y  Wang J  Hillmer S  Miao Y  Lo SW  Wang X  Robinson DG  Jiang L 《The Plant cell》2010,22(12):4009-4030
The exocyst protein complex mediates vesicle fusion with the plasma membrane. By expressing an (X)FP-tagged Arabidopsis thaliana homolog of the exocyst protein Exo70 in suspension-cultured Arabidopsis and tobacco (Nicotiana tabacum) BY-2 cells, and using antibodies specific for Exo70, we detected a compartment, which we term EXPO (for exocyst positive organelles). Standard markers for the Golgi apparatus, the trans-Golgi network/early endosome, and the multivesicular body/late endosome in plants do not colocalize with EXPO. Inhibitors of the secretory and endocytic pathways also do not affect EXPO. Exo70E2-(X)FP also locates to the plasma membrane (PM) as discrete punctae and is secreted outside of the cells. Immunogold labeling of sections cut from high-pressure frozen samples reveal EXPO to be spherical double membrane structures resembling autophagosomes. However, unlike autophagosomes, EXPOs are not induced by starvation and do not fuse with the lytic compartment or with endosomes. Instead, they fuse with the PM, releasing a single membrane vesicle into the cell wall. EXPOs are also found in other cell types, including root tips, root hair cells, and pollen grains. EXPOs therefore represent a form of unconventional secretion unique to plants.  相似文献   

12.
Evidence for a sorting endosome in Arabidopsis root cells   总被引:6,自引:0,他引:6  
In eukaryotic cells, the endocytic and secretory pathways are key players in several physiological processes. These pathways are largely inter-connected in animal and yeast cells through organelles named sorting endosomes. Sorting endosomes are multi-vesicular compartments that redirect proteins towards various destinations, such as the lysosomes or vacuoles for degradation, the trans-Golgi network for retrograde transport and the plasma membrane for recycling. In contrast, cross-talk between the endocytic and secretory pathways has not been clearly established in plants, especially in terms of cargo protein trafficking. Here we show by co-localization analyses that endosomes labelled with the AtSORTING NEXIN1 (AtSNX1) protein overlap with the pre-vacuolar compartment in Arabidopsis root cells. In addition, alteration of the routing functions of AtSNX1 endosomes by drug treatments leads to mis-routing of endocytic and secretory cargo proteins. Based on these results, we propose that the AtSNX1 endosomal compartment represents a sorting endosome in root cells, and that this specialized organelle is conserved throughout eukaryotes.  相似文献   

13.
Exo- and endocytotic membrane trafficking is an essential process for transport of secretory proteins, extracellular glycans, transporters and lipids in plant cells. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco BY-2 cells as a model system, we recently demonstrated that SCAMP2 positive structures containing secretory materials are transported from the Golgi apparatus to the plasma membrane (PM) and/or cell plate. This structure is consisted with clustered vesicles and was thus named the secretory vesicle cluster (SVC). Here, we have utilized the reversible photoswitching fluorescent protein Dronpa1 to trace the movement of SCAMP2 on the PM and cell plate. Activated SCAMP2-Dronpa fluorescence on the PM and cell plate moved into the BY-2 cells within several minutes, but did not spread around PM. This is consistent with recycling of SCAMP2 among endomembrane compartments such as the TGN, PM and cell plate. The relationship between SVC-mediated trafficking and exo- and endocytosis of plant cells is discussed taking into account this new data and knowledge provided by recent reports.Key words: SVC, secretory vesicle cluster, secretory carrier membrane protein 2, SCAMP2, exocytosis, endocytosis, dronpa, trans-Golgi network, Golgi apparatus, pectin, secretory protein, plasma menbrane, endosome, endomembrane systemExo- and endocytosis are essential events for cellular division and expansion. During exocytosis, lipids, proteins and polysaccharides are synthesized and/or modified in the Golgi apparatus and sorted into secretory vesicles at the trans-Golgi network (TGN) for transport to the PM2 or extracellular space. Secretory carrier membrane proteins (SCAMPs) are a group of transmembrane proteins that plays vesicle trafficking between Golgi apparatus and PM in higher eukaryotic cells.3 Recently it was reported that in BY-2 cells, the rice SCAMP1 is localized to the PM and clathrin-coated tubularvesicular structures that were likely the early endosomal compartment.4 The same protein is also targeted to the cell plate in dividing cells.5 We have recently reported that another member of the SCAMP family, SCAMP2 from tobacco, is localized to the TGN, PM, cell plate and previously uncharacterized SVC organelles, which are an intermediate organelle between the TGN and PM.6Both SCAMP1 and SCAMP2 appear to be recycled between the PM and intracellular compartments. This was suggested by data using stelyl dye FM4-64 as an endocytotic marker, fluorescent-tagged SCAMP proteins and protein trafficking inhibitors such as brefeldin A and 2,3-butanedione monoxime. We reported that SCAMP2 is exported to the PM from dotted structures in the cells, and back from the PM via the acto-myosin pathway but do not transport FM4-64 positive early endosome.6 As SCAMP2 did not localize on multivesicular bodies, endocytic vesicles may be directly transported to TGN or Golgi.6 However, this data was obtained using inhibitors that disrupt the trafficking system, and thus we have now investigated the endocytotic transport in the absence of inhibitors.Dronpa is a reversible photo-switching fluorescent protein. Using 488 and 405 nm laser light this protein can be converted between fluorescent and non-fluorescent forms within milliseconds.1 In order to test whether SCAMP2 returned to internal compartments from the PM, and to characterize the initial compartment of endocytosis, we expressed Dronpatagged SCAMP2 (SCAMP2-Dronpa) in tobacco BY-2 cells. The fluorescence of SCAMP2-Dronpa was similar to that for SCAMP2-YFP and -mRFP fusions6 (Fig. 1A, upper part). To visualize the endocytic transport of SCAMP2-Dronpa, we first erased the majority of Dronpa fluorescence by illumination with 488 nm laser and then activated the protein at a part of the PM by 405 nm illumination using confocal laser scanning microscope (LSM) (Fig. 1A, upper right part). The fluorescence was then traced by 30 minutes interval up to 90 minutes (Fig. 1A, lower pictures). SCAMP2 signals at the PM did not spread laterally in the PM and decreased over the time. In parallel, signals were detected in the cytosol and some of them appeared as puncta (Fig. 1A, arrowheads). This observation is consistent with our proposal that SCAMP2 is recycled back into the intracellular compartment from the PM, possibly through the TGN without passing through the early endosome.6Open in a separate windowFigure 1Time-lapse images of BY-2 cells expressing ScamP2-Dronpa. Fluorescence of Dronpa (mBL) tagged ScamP2 in the cells was erased by 488 nm laser and then a spot of Pm (a) or cell plate (B) was activated by 405 nm diode laser. these data were obtained by LSm510 meta, 63x oil lens, Argon laser with 488-nm excitation and a 505 nm LP filter (Zeiss). Arrowheads indicate dotted structures. Bar = 20 μm.During cytokinesis, cell wall materials and membrane proteins accumulate in the cell plate.79 It has been shown that clathrin-coated vesicles (CCVs) and their constituents such as adapter proteins and dynamins are associated with cell plate membrane.10 However, it is not clear whether these molecules on the cell plate are re-used in daughter cells or are degraded at the cell plate. We thus investigated the movement of SCAMP2-Dronpa fluorescence on the cell plate during cytokinesis. Fluorescence of SCAMP2-Dronpa within late metaphase cells was first erased, followed by activation of SCAMP2-Dronpa specifically on the cell plate (Fig. 1B). Following a 15 min of incubation, SCAMP2-Dronpa associated fluorescence on the cell plate moved into intracellular structures within daughter cells. This confirmed our previous observation that SCAMP2 was transported to the trans-Golgi/TGN or intracellular structures from the cell plate during the cytokinesis.6Transmission electron microscope and LSM studies have revealed that CCVs are present in cell plates.10 Recent tomographic observation suggested that early- and late TGNs having CCVs exist not only in the cell plate region but also other places of the plant cell.11 We found that immature SVCs, which might be identical to late TGN, are converted to mature SVCs by budding CCVs.6 Therefore, transport from the Golgi apparatus located inside of the cells to the PM or cell plate is mediated by SVCs, which are generated as immature SVCs from the TGN and converted to mature SVCs by budding CCVs during transport. Eventually, the mature SVC fuses with the PM and/or expanding cell plate (Fig. 2, left), after which CCVs are generated from the expanded cell plate to recycle SCAMPs and other molecules back to the daughter cells.Open in a separate windowFigure 2A model of the exocytotic pathway and SCAMP2 trafficking in plant cells. From the Golgi apparatus or tGn, at least two distinct compartments, such as maSc and SVc are generated for secretion. ScamP2 locates in the SVc and is transported to the Pm or cell plate. thereafter, SCAMP2 is recycled back to the TGN via clathrin-mediated endocytosis.  相似文献   

14.
Secretory carrier membrane proteins (SCAMPs) are ubiquitous components of recycling vesicles that shuttle between the plasma membrane, endosomes, and the trans-Golgi complex. SCAMPs contain multiple N-terminal NPF repeats and four highly conserved transmembrane regions. NPF repeats often interact with EH domain proteins that function in budding of transport vesicles from the plasma membrane or the Golgi complex. We now show that the NPF repeats of SCAMP1 bind to two EH domain proteins, intersectin 1, which is involved in endocytic budding at the plasma membrane, and gamma-synergin, which may mediate the budding of vesicles in the trans-Golgi complex. Expression of SCAMP1 lacking the N-terminal NPF repeats potently inhibited transferrin uptake by endocytosis. Our data suggest that one of the functions of SCAMPs is to participate in endocytosis via a mechanism which may involve the recruitment of clathrin coats to the plasma membrane and the trans-Golgi network.  相似文献   

15.
Synaptic vesicle proteins are suggested to travel from the trans-Golgi network to active zones via tubulovesicular organelles, but the participation of different populations of endosomes in trafficking remains a matter of debate. Therefore, we generated a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) and studied the localization of VAChT in organelles in the cell body and varicosities of living cholinergic cells. GFP-VAChT is distributed to both early and recycling endosomes in the cell body and is also observed to accumulate in endocytic organelles within varicosities of SN56 cells. GFP-VAChT positive organelles in varicosities are localized close to plasma membrane and are labeled with FM4-64 and GFP-Rab5, markers of endocytic vesicles and early endosomes, respectively. A GFP-VAChT mutant lacking a dileucine endocytosis motif (leucine residues 485 and 486 changed to alanine residues) accumulated at the plasma membrane in SN56 cells. This endocytosis-defective GFP-VAChT mutant is localized primarily at the somal plasma membrane and exhibits reduced neuritic targeting. Furthermore, the VAChT mutant did not accumulate in varicosities, as did VAChT. Our data suggest that clathrin-mediated internalization of VAChT to endosomes at the cell body might be involved in proper sorting and trafficking of VAChT to varicosities. We conclude that genesis of competent cholinergic secretory vesicles depends on multiple interactions of VAChT with endocytic proteins.  相似文献   

16.
The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.  相似文献   

17.
Positively charged nanogold was used as a probe to trace the internalization of plasma membrane (PM) domains carrying negatively charged residues at an ultrastructural level. The probe revealed distinct endocytic pathways within tobacco protoplasts and allowed the morphology of the organelles involved in endocytosis to be characterized in great detail. Putative early endosomes with a tubulo-vesicular structure, similar to that observed in animal cells, are described and a new compartment, characterized by interconnected vesicles, was identified as a late endosome using the Arabidopsis anti-syntaxin family Syp-21 antibody. Endocytosis dissection using Brefeldin A (BFA), pulse chase, temperature- and energy-dependent experiments combined with quantitative analysis of nanogold particles in different compartments, suggested that recycling to the PM predominated with respect to degradation. Further experiments using ikarugamycin (IKA), an inhibitor of clathrin-dependent endocytosis, and negatively charged nanogold confirmed that distinct endocytic pathways coexist in tobacco protoplasts.  相似文献   

18.
Four isoforms of the Na+/H+ exchanger (NHE6-NHE9) are distributed to intracellular compartments in human cells. They are localized to Golgi and post-Golgi endocytic compartments as follows: mid- to trans-Golgi, NHE8; trans-Golgi network, NHE7; early recycling endosomes, NHE6; and late recycling endosomes, NHE9. No significant localization of these NHEs was observed in lysosomes. The distribution of these NHEs is not discrete in the cells, and there is partial overlap with other isoforms, suggesting that the intracellular localization of the NHEs is established by the balance of transport in and out of the post-Golgi compartments as the dynamic membrane trafficking. The overexpression of NHE isoforms increased the luminal pH of the compartments in which the protein resided from the mildly acidic pH to the cytosolic pH, suggesting that their in vivo function is to regulate the pH and monovalent cation concentration in these organelles. We propose that the specific NHE isoforms contribute to the maintenance of the unique acidic pH values of the Golgi and post-Golgi compartments in the cell.  相似文献   

19.
Tracking down the elusive early endosome   总被引:7,自引:0,他引:7  
Despite significant progress in understanding protein trafficking and compartmentation in plants, the identification and protein compartmentalization for organelles that belong to both the secretory and endocytic pathways have been difficult because protein trafficking has generally been studied separately in these two pathways. However, recent data indicate that the trans-Golgi network serves as an early endosome merging the secretory and endocytic pathways in plant cells. Here, we discuss the proteins identified as markers for post-Golgi compartments in these two pathways and propose that the trans-Golgi network is a pivotal organelle with multiple sorting domains for post-Golgi protein trafficking in plant cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号