首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major route of human T-cell leukemia virus type 1 (HTLV-1) infection is mother-to-child transmission caused by breast-feeding. We investigated the host immune responses to orally established persistent HTLV-1 infection in adult rats. HTLV-1-producing MT-2 cells were inoculated into immunocompetent adult rats either orally, intravenously, or intraperitoneally. HTLV-1 proviruses were detected in the peripheral blood and several organs for at least 12 weeks. Transmission of HTLV-1 to these animals was confirmed by analysis of HTLV-1 flanking regions. Despite persistent HTLV-1 presence, none of the orally inoculated rats produced detectable levels of anti-HTLV-1 antibodies, whereas all intravenously or intraperitoneally inoculated rats showed significant anti-HTLV-1 antibody responses. T-cell proliferative responses against HTLV-1 were also absent in orally inoculated rats. Our findings suggest that gastrointestinal exposure of adult rats to HTLV-1-infected cells induces persistent HTLV-1 infection in the absence of both humoral and cellular immune responses against HTLV-1. This immune unresponsiveness at primary infection may subsequently affect the host defense ability against HTLV-1.  相似文献   

2.
Ye J  Xie L  Green PL 《Journal of virology》2003,77(14):7728-7735
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8(+) T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.  相似文献   

3.
We studied the fine needle aspiration (FNA) cytology of high grade peripheral T-cell lymphomas from eight human T-lymphotropic virus-1 (HTLV-1) positive patients. FNA smears from seven lymphomas showed a distinctive cytologic pattern with a dominance of rounded cells with irregular nuclei and a moderately basophilic cytoplasm. Irregular cells with a pale abundant cytoplasm were present in varying amounts. Some smears contained a few giant cells with cerebriform nuclei. In addition, plasma cells and eosinophils were found. Epithelioid cells were an inconstant finding. On histology these seven lymphomas were assigned to the pleomorphic medium-large cell subtype and all but one were of T-helper phenotype with rearrangements of the T-cell receptor. FNA smears from a lymph node in a patient with a previous histological diagnosis of lymphomatoid papulosis of the gingiva showed a monotonous pattern of large immunoblastic cells with some binucleated variants consistent with a diagnosis of high grade immunoblastic lymphoma, which was confirmed histologically. Our results show that peripheral T-cell lymphomas from HTLV-1 positive patients have cytological patterns which are distinctive enough to allow a conclusive diagnosis of high grade T-cell lymphoma. However, we do not think that the cytology of HTLV-1 positive lymphomas can be differentiated from that of virus-unrelated high grade T-cell lymphomas.  相似文献   

4.
5.
Human T-cell leukemia virus type 1 (HTLV-1) causes T-cell malignancies in a small percentage of the population infected with the virus after a long carrier state. In the present study, we established a seronegative HTLV-1 carrier state in rats inoculated with a newly established HTLV-1-infected rat T cell line, FPM1. FPM1 originated from rat thymocytes cocultured with a human HTLV-1 producer, MT-2 cells, and expressed rat CD4, CD5, CD25, and HTLV-1 Tax. However, FPM1 scarcely expressed other major HTLV-1 structural proteins and failed to induce typical antibody responses against HTLV-1 in inoculated rats. In contrast, control rats inoculated with MT-2 cells generated significant levels of anti-HTLV-1 antibodies. HTLV-1 proviruses were detected in peripheral blood cells of syngeneic rats inoculated with FPM1 for more than 1 year. Analysis of the flanking region of HTLV-1 provirus integrated into host cells suggested that FPM1 cells remained in these animals over a relatively long period of time. However, a similar seronegative HTLV-1 carrier state was induced in the rats inoculated with mitomycin C-treated FPM1 cells and also in FPM1-inoculated allogeneic rats, suggesting that FPM1 could also transmit HTLV-1 into host cells in vivo. Our findings indicated that (i) HTLV-1-immortalized T cells which preferentially express HTLV-1 Tax persisted in vivo but failed to induce any diseases in immunocompetent syngeneic rats and that (ii) suboptimal levels of HTLV-1 for antibody responses allowed the establishment of persistent HTLV-1 infection.  相似文献   

6.

Background

HTLV-1 and HTLV-2 are retroviruses linked etiologically to various human diseases, and both of them can be transmitted by vertical route, sexual intercourse, blood transfusion and intravenous drug use. Recently, some HTLV-infected cases have been reported and this virus is mainly present in the Southeast coastal areas in China, but has not been studied for the people in Central China.

Objectives

To know the epidemiologic patterns among different population samples in Central China and further identify risk factor for HTLV-1 and HTLV-2 infection.

Methods

From January 2008 to December 2011, 5480 blood samples were screened for HTLV-1/2 antibodies by using enzyme immunoassay, followed by Western Blot.

Results

The prevalence of HTLV-1 and HTLV-2 was found with infection rates 0.13% and 0.05% among all population samples for HTLV-1 and HTLV-2, respectively. The highest percentages of infection, 0.39% and 0.20%, were found in the high risk group, while only 0.06% and 0.03% in the blood donor group. There was only one case of HTLV-1 infection (0.11%) among patients with malignant hematological diseases. Of seven HTLV-1 positive cases, six were co-infected with HBV, two with HCV and one with HIV. Among three HTLV-2 positive individuals all were co-infected with HBV, one with HCV.

Conclusions

HTLV-1 and HTLV-2 have been detected in the Central China at low prevalence, with the higher infection rate among high risk group. It was also found that co-infection of HTLV-1/2 with HIV and HBV occurred, presumably due to their similar transmission routes. HTLV-1/2 antibody screen among certain population would be important to prevent the spread of the viruses.  相似文献   

7.
8.
Human T-cell leukemia virus type 1 (HTLV-1) persistently infects humans, and the proviral loads that persist in vivo vary widely among individuals. Elevation in the proviral load is associated with serious HTLV-1-mediated diseases, such as adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. However, it remains controversial whether HTLV-1-specific T-cell immunity can control HTLV-1 in vivo. We previously reported that orally HTLV-1-infected rats showed insufficient HTLV-1-specific T-cell immunity that coincided with elevated levels of the HTLV-1 proviral load. In the present study, we found that individual HTLV-1 proviral loads established in low-responding hosts could be reduced by the restoration of HTLV-1-specific T-cell responses. Despite the T-cell unresponsiveness for HTLV-1 in orally infected rats, an allogeneic mixed lymphocyte reaction in the splenocytes and a contact hypersensitivity response in the skin of these rats were comparable with those of naive rats. HTLV-1-specific T-cell response in orally HTLV-1-infected rats could be restored by subcutaneous reimmunization with mitomycin C (MMC)-treated syngeneic HTLV-1-transformed cells. The reimmunized rats exhibited lower proviral loads than untreated orally infected rats. We also confirmed that the proviral loads in orally infected rats decreased after reimmunization in the same hosts. Similar T-cell immune conversion could be reproduced in orally HTLV-1-infected rats by subcutaneous inoculation with MMC-treated primary T cells from syngeneic orally HTLV-1-infected rats. The present results indicate that, although HTLV-1-specific T-cell unresponsiveness is an underlying risk factor for the propagation of HTLV-1-infected cells in vivo, the risk may potentially be reduced by reimmunization, for which autologous HTLV-1-infected cells are a candidate immunogen.  相似文献   

9.
Human T-cell leukemia virus type-1 (HTLV-1) is associated with a number of human diseases. Based on the therapeutic success of human immunodeficiency virus type 1 (HIV-1) PR inhibitors, the proteinase (PR) of HTLV-1 is a potential target for chemotherapy. To facilitate the design of potent inhibitors, the subsite specificity of HTLV-1 PR was characterized and compared to that of HIV-1 PR. Two sets of substrates were used that contained single amino-acid substitutions in peptides representing naturally occurring cleavage sites in HIV-1 and HTLV-1. The original HIV-1 matrix/capsid cleavage site substrate and most of its substituted peptides were not hydrolyzed by the HTLV-1 enzyme, except for those with hydrophobic residues at the P4 and P2 positions. On the other hand, most of the peptides representing the HTLV-1 capsid/nucleocapsid cleavage site were substrates of both enzymes. A large difference in the specificity of HTLV-1 and HIV-1 proteinases was demonstrated by kinetic measurements, particularly with regard to the S4 and S2 subsites, whereas the S1 subsite appeared to be more conserved. A molecular model of the HTLV-1 PR in complex with this substrate was built, based on the crystal structure of the S9 mutant of Rous sarcoma virus PR, in order to understand the molecular basis of the enzyme specificity. Based on the kinetics of shortened analogs of the HTLV-1 substrate and on analysis of the modeled complex of HTLV-1 PR with substrate, the substrate binding site of the HTLV-1 PR appeared to be more extended than that of HIV-1 PR. Kinetic results also suggested that the cleavage site between the capsid and nucleocapsid protein of HTLV-1 is evolutionarily optimized for rapid hydrolysis.  相似文献   

10.
Xie L  Green PL 《Journal of virology》2005,79(23):14536-14545
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.  相似文献   

11.
We have developed a system for expression and purification of wild-type human T-cell leukemia virus type 1 (HTLV-1) proteinase to attain sufficient quantities for structural, kinetic, and biophysical investigations. However, similar to the human immunodeficiency virus type 1 (HIV-1) proteinase, HTLV-1 proteinase also undergoes autoproteolysis rapidly upon renaturation to produce two products. The site of this autoproteolytic cleavage was mapped, and a resistant HTLV-1 proteinase construct (L40I) as well as another construct, wherein the two cysteine residues were exchanged to alanines, were expressed and purified. Oligopeptide substrates representing the naturally occurring cleavage sites in HTLV-1 were good substrates of the HTLV-1 proteinase. The kinetic parameters kcat and Km were nearly identical for all the three enzymes. Although three of four peptides representing HTLV-1 proteinase cleavage sites were fairly good substrates of HIV-1 proteinase, only two of nine peptides representing HIV-1 proteinase cleavage sites were hydrolyzed by the HTLV-1 proteinase, suggesting substantial differences in the specificity of the two enzymes. The large difference in the specificity of the two enzymes was also demonstrated by inhibition studies. Of the several inhibitors of HIV-1 or other retroviral proteinases that were tested on HTLV-1 proteinase, only two inhibit the enzyme with a Ki lower than 100 nM.  相似文献   

12.
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a variety of clinical manifestations, including tropical spastic paraparesis or HTLV-1-associated myelopathy (TSP/HAM). Viral detection in the central nervous system (CNS) of TSP/HAM patients demonstrates the ability of HTLV-1 to cross the blood-brain barrier (BBB). To investigate viral entry into the CNS, rat brain capillary endothelial cells were exposed to human lymphocytes chronically infected by HTLV-1 (MT2), to lymphocytes isolated from a seropositive patient, or to a control lymphoblastoid cell line (CEM). An enhanced adhesion to and migration through brain endothelial cells in vitro was observed with HTLV-1-infected lymphocytes. HTLV-1-infected lymphocytes also induced a twofold increase in the paracellular permeability of the endothelial monolayer. These effects were associated with an increased production of tumor necrosis factor alpha by HTLV-1-infected lymphocytes in the presence of brain endothelial cells. Ultrastructural analysis showed that contact between endothelial cells and HTLV-1-infected lymphocytes resulted in a massive and rapid budding of virions from lymphocytes, followed by their internalization into vesicles by brain endothelial cells and apparent release onto the basolateral side, suggesting that viral particles may cross the BBB using the transcytotic pathway. Our study also demonstrates that cell-cell fusion occurs between HTLV-1-infected lymphocytes and brain endothelial cells, with the latter being susceptible to transient HTLV-1 infection. These aspects may help us to understand the pathogenic mechanisms associated with neurological diseases induced by HTLV-1 infection.  相似文献   

13.

Background

Human T-Lymphotropic Virus Type 1 (HTLV-1) infection causes lethal adult T-cell leukemia (ATL) and severely debilitating HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in up to 5% of infected adults. HTLV-1 is endemic in parts of Africa and the highest prevalence in West Africa (5%) has been reported in Caio, a rural area in the North-West of Guinea-Bissau. It is not known which HTLV-1 variants are present in this community. Sequence data can provide insights in the molecular epidemiology and help to understand the origin and spread of HTLV-1.

Objective

To gain insight into the molecular diversity of HTLV-1 in West Africa.

Methods

HTLV-1 infected individuals were identified in community surveys between 1990–2007. The complete Long Terminal Repeat (LTR) and p24 coding region of HTLV-1 was sequenced from infected subjects. Socio-demographic data were obtained from community census and from interviews performed by fieldworkers. Phylogenetic analyses were performed to characterize the relationship between the Caio HTLV-1 and HTLV-1 from other parts of the world.

Results

LTR and p24 sequences were obtained from 72 individuals (36 LTR, 24 p24 only and 12 both). Consistent with the low evolutionary change of HTLV-1, many of the sequences from unrelated individuals showed 100% nucleotide identity. Most (45 of 46) of the LTR sequences clustered with the Cosmopolitan HTLV-1 subtype 1a, subgroup D (1aD). LTR and p24 sequences from two subjects were divergent and formed a significant cluster with HTLV-1 subtype 1g, and with the most divergent African Simian T-cell Lymphotropic Virus, Tan90.

Conclusions

The Cosmopolitan HTLV-1 1aD predominates in this rural West African community. However, HTLV-1 subtype 1g is also present. This subtype has not been described before in West Africa and may be more widespread than previously thought. These data are in line with the hypothesis that multiple monkey-to-man zoonotic events are contributing to HTLV-1 diversity.  相似文献   

14.
15.
Adult T-cell leukemia (ATL) occurs in a small population of human T-cell leukemia virus type 1 (HTLV-1)-infected individuals. Although the critical risk factor for ATL development is not clear, it has been noted that ATL is incidentally associated with mother-to-child infection, elevated proviral loads, and weakness in HTLV-1-specific T-cell immune responses. In the present study, using a rat system, we investigated the relationships among the following conditions: primary HTLV-1 infection, a persistent HTLV-1 load, and host HTLV-1-specific immunity. We found that the persistent HTLV-1 load in orally infected rats was significantly greater than that in intraperitoneally infected rats. Even after inoculation with only 50 infected cells, a persistent viral load built up to considerable levels in some orally infected rats but not in intraperitoneally infected rats. In contrast, HTLV-1-specific cellular immune responses were markedly impaired in orally infected rats. As a result, a persistent viral load was inversely correlated with levels of virus-specific T-cell responses in these rats. Otherwise very weak HTLV-1-specific cellular immune responses in orally infected rats were markedly augmented after subcutaneous reimmunization with infected syngeneic rat cells. These findings suggest that HTLV-1-specific immune unresponsiveness associated with oral HTLV-1 infection may be a potential risk factor for development of ATL, allowing expansion of the infected cell reservoir in vivo, but could be overcome with immunological strategies.  相似文献   

16.
The cell-mediated killer activity in cynomolgus monkeys, which were infected 2.5 yr previously with HTLV-1, was examined. With HTLV-1-infected autologous lymphoid cells as targets, HTLV-1-specific killer cells were not detected among PBL cells of infected monkeys, but in monkeys in which specific memory cells were found. These memory cells were converted to active specific killer cells by stimulation with mytomycin C (MMC)-treated HTLV-1 infected autologous cells in vitro. Target blocking by anti-HTLV-1-related Ag suggested that the target molecules recognized by the specific killer cells may be virus envelope glycoprotein gp 68 and other cellular Ag induced by HTLV-1 infection. In addition to the specific killer cells, NK cells that could kill not only NK-sensitive target cells but also target lymphoid cells with HTLV-1 Ag on their surface, were found in these monkeys. In vitro stimulation caused enhancement of NK cell activity as well as induction of antigen specific killer cells. These findings suggest that Ag-specific killer cells may work together with NK cells to eliminate HTLV-1-bearing T cells in vivo.  相似文献   

17.
To gain new insights on the origin, evolution, and modes of dissemination of human T-cell leukemia virus type I (HTLV-1), we performed a molecular analysis of 58 new African HTLV-1 strains (18 from West Africa, 36 from Central Africa, and 4 from South Africa) originating from 13 countries. Of particular interest were eight strains from Pygmies of remote areas of Cameroon and the Central African Republic (CAR), considered to be the oldest inhabitants of these regions. Eight long-term activated T-cell lines producing HTLV-1 gag and env antigens were established from peripheral blood mononuclear cell cultures of HTLV-1 seropositive individuals, including three from Pygmies. A fragment of the env gene encompassing most of the gp21 transmembrane region was sequenced for the 58 new strains, while the complete long terminal repeat (LTR) region was sequenced for 9 strains, including 4 from Pygmies. Comparative sequence analyses and phylogenetic studies performed on both the env and LTR regions by the neighbor-joining and DNA parsimony methods demonstrated that all 22 strains from West and South Africa belong to the widespread cosmopolitan subtype (also called HTLV-1 subtype A). Within or alongside the previously described Zairian cluster (HTLV-1 subtype B), we discovered a number of new HTLV-1 variants forming different subgroups corresponding mainly to the geographical origins of the infected persons, Cameroon, Gabon, and Zaire. Six of the eight Pygmy strains clustered together within this Central African subtype, suggesting a common origin. Furthermore, three new strains (two originating from Pygmies from Cameroon and the CAR, respectively, and one from a Gabonese individual) were particularly divergent and formed a distinct new phylogenetic cluster, characterized by specific mutations and occupying in most analyses a unique phylogenetic position between the large Central African genotype (HTLV-1 subtype B) and the Melanesian subtype (HTLV-1 subtype C). We have tentatively named this new HTLV-1 genotype HTLV-1 subtype D. While the HTLV-1 subtype D strains were not closely related to any known African strain of simian T-cell leukemia virus type 1 (STLV-1), other Pygmy strains and some of the new Cameroonian and Gabonese HTLV-1 strains were very similar (>98% nucleotide identity) to chimpanzee STLV-1 strains, reinforcing the hypothesis of interspecies transmission between humans and monkeys in Central Africa.  相似文献   

18.
Human T-lymphotropic virus type 1 (HTLV-1) and HTLV-2 differ in pathogenicity in vivo. HTLV-1 causes leukemia and neurologic and inflammatory diseases, whereas HTLV-2 is less clearly associated with human disease. Both retroviruses transform human T cells in vitro, and transformation by HTLV-1 was found to be associated with the constitutive activation of the Jak/STAT pathway. To assess whether HTLV-2 transformation may also result in constitutive activation of the Jak/STAT pathway, six interleukin-2-independent, HTLV-2-transformed T-cell lines were analyzed for the presence of activated Jak and STAT proteins by electrophoretic mobility shift assay. In addition, the phosphorylation status of Jak and STAT proteins was assessed directly by immunoprecipitation and immunoblotting with an antiphosphotyrosine antibody. Jak/STAT proteins were not found to be constitutively activated in any of the T-cell lines infected by the type 2 human and nonhuman primate viruses, suggesting that HTLV-2 and the cognate virus simian T-lymphotropic virus type 2 from Pan paniscus transform T cells in vitro by mechanisms at least partially different from those used by HTLV-1.  相似文献   

19.
Studies using adherent cell lines have shown that glucose transporter-1 (GLUT-1) can function as a receptor for human T-cell leukemia virus type 1 (HTLV). In primary CD4(+) T cells, heparan sulfate proteoglycans (HSPGs) are required for efficient entry of HTLV-1. Here, the roles of HSPGs and GLUT-1 in HTLV-1 and HTLV-2 Env-mediated binding and entry into primary T cells were studied. Examination of the cell surface of activated primary T cells revealed that CD4(+) T cells, the primary target of HTLV-1, expressed significantly higher levels of HSPGs than CD8(+) T cells. Conversely, CD8(+) T cells, the primary target of HTLV-2, expressed GLUT-1 at dramatically higher levels than CD4(+) T cells. Under these conditions, the HTLV-2 surface glycoprotein (SU) binding and viral entry were markedly higher on CD8(+) T cells while HTLV-1 SU binding and viral entry were higher on CD4(+) T cells. Binding studies with HTLV-1/HTLV-2 SU recombinants showed that preferential binding to CD4(+) T cells expressing high levels of HSPGs mapped to the C-terminal portion of SU. Transfection studies revealed that overexpression of GLUT-1 in CD4(+) T cells increased HTLV-2 entry, while expression of HSPGs on CD8(+) T cells increased entry of HTLV-1. These studies demonstrate that HTLV-1 and HTLV-2 differ in their T-cell entry requirements and suggest that the differences in the in vitro cellular tropism for transformation and in vivo pathobiology of these viruses reflect different interactions between their Env proteins and molecules on CD4(+) and CD8(+) T cells involved in entry.  相似文献   

20.
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-infected clones did not demonstrate the same significant association with the genomic environment of the integrated provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution, which was highly stable over ∼8 years. These results suggest that there are significant differences in the selection forces that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号