首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mannose heptasaccharide existing in baker's yeast, Saccharomyces cerevisiae X2180-1A wild-type strain, was effectively synthesized as its allyl glycoside via TMSOTf-promoted condensation of a disaccharide donor 13 with a pentasaccharide acceptor 12, followed by deprotection. The pentasaccharide 12 was constructed by coupling of 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (9) with allyl 6-O-acetyl-3,4-di-O-benzoyl-alpha-D-mannopyranoside (10), followed by deacetylation. The tetrasaccharide 9 was obtained by coupling of 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (5) with allyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (6), followed by deallylation and trichloroacetimidation. The disaccharides 6 and 13 were readily obtained by known methods.  相似文献   

2.
Zhu Y  Chen L  Kong F 《Carbohydrate research》2002,337(3):207-215
A highly concise and effective synthesis of the mannose octasaccharide of the N-linked glycan in the adhesion domain of human CD2 was achieved via TMSOTf-promoted selective 6-glycosylation of a trisaccharide 4,6-diol acceptor with a pentasaccharide donor, followed by deprotection. The pentasaccharide was constructed by selective 3,6-diglycosylation of 1,2-O-ethylidene-beta-D-mannopyranose with 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate, while the trisaccharide was obtained by selective 3-O-glycosylation of allyl 4,6-O-benzylidene-alpha-D-mannopyranoside with the same disaccharide trichloroacetimidate, followed by debenzylidenation. The mannose hexasaccharide antigenic factor 13b was synthesized by condensation of a trisaccharide donor, 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate, with a trisaccharide acceptor, methyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside, followed by deprotection.  相似文献   

3.
Zeng Y  Zhang W  Ning J  Kong F 《Carbohydrate research》2002,337(24):2383-2391
Two isomeric pentasaccharides, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp (I) and beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp (II), the possible repeating unit of the beta-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht, were synthesized as their 4-methoxyphenyl glycosides in a regio- and stereoselective manner. The pentasaccharide I was obtained from 3-O-selective glycosylation of 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (12) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (6) followed by acetylation, debenzylidenation, and 6-O-selective glucosylation with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl trichloroacetimidate (1), and then by deprotection. The pentasaccharide II was obtained from 3-O-selective coupling of 12 with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)-2,4-di-O-acetyl-3-O-allyl-alpha-D-glucopyranosyl trichloroacetimidate (10) followed by acetylation, debenzylidenation, and 6-O-selective glycosylation with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), and finally by deprotection.  相似文献   

4.
Ning J  Heng L  Kong F 《Carbohydrate research》2002,337(13):1159-1164
A highly concise and effective synthesis of the mannose octasaccharide repeating unit of the cell-wall mannan of Trichophyton mentagrophytes and T. rubrum was achieved via 6-O-glycosylation of a tetrasaccharide acceptor with a tetrasaccharide donor, followed by deprotection. The key tetrasaccharide (11) was constructed by selective 6-O-glycosylation of allyl 3,4-di-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside with 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate, then with 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate. The tetrasaccharide acceptor (13) was obtained by selective 6-O-deacetylation of 11, while the tetrasaccharide donor 12 was obtained by deallylation of 11, followed by trichloroacetimidation.  相似文献   

5.
We conducted a structural analysis of the cell wall mannan-protein complex (mannan) isolated from a pathogenic yeast, Candida glabrata IFO 0622 strain. The chemical structure of mannobiose released from this mannan by treatment with 10 mM HCl at 100 degrees C for 1 h was identified as Manp beta 1-2Man. The treatment of this mannan with 100 mM NaOH at 25 degrees C for 18 h gave a mixture of alpha-1,2- and alpha-1,3-linked oligosaccharides, from tetraose to biose, and mannose. The acid- and alkali-stable mannan moiety was subjected to mild acetolysis with a 100:100:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4 at 40 degrees C for 36 h. The resultant three novel oligosaccharides, tetraose, hexaose, and heptaose, were identified as Manp beta 1-2Manp alpha 1-2Manp alpha 1-2Man, Manp alpha 1-2Manp alpha 1-2Manp alpha 1-6Manp alpha 1-2Manp alpha 1-2Man, and Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Manp alpha 1-6Manp alpha 1- 2Manp alpha 1-2Man, respectively, in addition to the three known oligosaccharides, Manp alpha 1-2Man, Manp alpha 1-2Manp alpha 1-2Man, and Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Man. A sequential analytical procedure involving partial acid hydrolysis with hot 0.3 M H2SO4, methylation, fast atom bombardment mass, and 1H NMR analyses was quite effective in the structural determination of the novel oligosaccharides. The results indicate that this mannan possesses a structure closely resembling that of Saccharomyces cerevisiae X2180-1A wild type strain, with the presence of small amounts of oligomannosyl residue, Manp beta 1-2Manp alpha 1-X, corresponding to one of the epitopes dominating serotype-A specificity of Candida spp., in addition to branches corresponding to hexaose and heptaose each containing one intermediary alpha-1,6 linkage.  相似文献   

6.
Ma Z  Zhang J  Kong F 《Carbohydrate research》2004,339(10):1761-1771
Pentasaccharide repeating unit 20 of the lipoarabinomannan from the equine pathogen, Rhodococcus equi, and its dimer 31, were synthesized. The pentasaccharide was obtained by assembling a benzoylated 2,6-branched mannosyl trisaccharide acceptor 13 with a free hydroxyl group at C-2' of the mannose residue attached to the core mannose residue by (1 --> 6)-linkage, followed by coupling with 2,3,5-tri-O-benzoyl-alpha-D-arabinofuranosyl-(1 --> 2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (18), and by deacylation. Meanwhile, the decamer 31 was obtained by firstly preparing a benzoylated mannose (1 --> 6)-linked tetrasaccharide backbone 26 with 2-, 2"-O-ClAc, and 2'-, 2'-O-Ac groups, respectively, then by dechloroacetylation and subsequent condensation with perbenzoylated trichloroacetimidate, and then by deacetylation and subsequent coupling with 18, and finally, by deacylation.  相似文献   

7.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

8.
Stoyan T  Carbon J 《Eukaryotic cell》2004,3(5):1154-1163
The human pathogenic yeast Candida glabrata is the second most common Candida pathogen after Candida albicans, causing both bloodstream and mucosal infections. The centromere (CEN) DNA of C. glabrata (CgCEN), although structurally very similar to that of Saccharomyces cerevisiae, is not functional in S. cerevisiae. To further examine the structure of the C. glabrata inner kinetochore, we isolated several C. glabrata homologs of S. cerevisiae inner kinetochore protein genes, namely, genes for components of the CBF3 complex (Ndc10p, Cep3p, and Ctf13p) and genes for the proteins Mif2p and Cse4p. The amino acid sequence identities of these proteins were 32 to 49% relative to S. cerevisiae. CgNDC10, CgCEP3, and CgCTF13 are required for growth in C. glabrata and are specifically found at CgCEN, as demonstrated by chromatin immunoprecipitation experiments. Cross-complementation experiments revealed that the isolated genes, with the exception of CgCSE4, are species specific and cannot functionally substitute for the corresponding genes in S. cerevisiae deletion strains. Likewise, the S. cerevisiae CBF3 genes NDC10, CEP3, and CTF13 cannot functionally replace their homologs in C. glabrata CBF3 deletion strains. Two-hybrid analysis revealed several interactions between these proteins, all of which were previously reported for the inner kinetochore proteins of S. cerevisiae. Our findings indicate that although many of the inner kinetochore components have evolved considerably between the two closely related species, the organization of the C. glabrata inner kinetochore is similar to that in S. cerevisiae.  相似文献   

9.
Zeng Y  Kong F 《Carbohydrate research》2004,339(8):1503-1510
Syntheses of a hexasaccharide, the dimer of the repeating unit of the group E streptococci polysaccharide, and a tetrasaccharide, the repeating unit of the E. coli O7:K98:H6, were achieved by constructing alternate alpha-L-(1-->2)- and alpha-L-(1-->3)-linked L-rhamnopyranose backbones and substituting with beta-linked D-glucopyranose side chains for the former, and a D-glucopyranosyluronate branch for the latter, respectively, at O-2 of the L-rhamnose ring.  相似文献   

10.
Zhao W  Kong F 《Carbohydrate research》2005,340(10):1673-1681
Beta-D-Xylp-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->4)]-alpha-D-Manp, the fragment of the exopolysaccharide from Cryptococcus neoformans serovar C, was synthesized as its methyl glycoside. Thus, chloroacetylation of allyl 3-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranoside (1) followed by debenzylidenation and selective 6-O-benzoylation afforded allyl 2-O-chloroacetyl-3-O-acetyl-6-O-benzoyl-alpha-D-mannopyranoside (4). Glycosylation of 4 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate (5) furnished the beta-(1-->4)-linked disaccharide 6. Dechloroacetylation gave the disaccharide acceptor 7 and subsequent coupling with 5 produced the trisaccharide 8. Deacetylation of 8 gave the trisaccharide acceptor 9 and subsequent coupling with a disaccharide 10 produced the pentasaccharide 11. Reiteration of deallylation and trichloroacetimidate formation from 11 yielded the pentasaccharide donor 12. Coupling of a disaccharide acceptor 13 with 12 afforded the heptasaccharide 14. Subsequent deprotection gave the heptaoside 16, while selective 2-O-deacetylation of 14 gave the heptasaccharide acceptor 15. Condensation of 15 with glucopyranosyluronate imidate 17 did not yield the expected octaoside, instead, an orthoester product 18 was obtained. Rearrangement of 18 did not give the target octaoside; but produced 15. Meanwhile, there was no reaction between 15 and the glycosyl bromide donor 19.  相似文献   

11.
The alpha-(1-->6)-linked and the alpha-(1-->2)-linked linear mannotetraose glycosides and, respectively, and the branched mannopentaoside [R=CH2(CH2)2CH2Cl] were synthesised by conventional methods in solution, using trichloroacetimidate donors, and the products were obtained in 39%, 42% and 40% overall yield, respectively. For comparative purposes, the same two linear tetrasaccharides were prepared by use of MPEG as a soluble polymer support, the yields being 34% and 14%, respectively. An attempted MPEG-supported synthesis of the branched pentasaccharide was unsuccessful. The merits and shortcomings of oligosaccharide syntheses on MPEG are discussed.  相似文献   

12.
Zhang J  Ma Z  Kong F 《Carbohydrate research》2003,338(17):1711-1718
alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->6)[alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)]-alpha-D-Manp-(1-->6)-[alpha-D-Manp-(1-->2)]-alpha-D-Manp, existing in the exopolysaccharide of Cryphonectria parasitica was synthesized as its allyl glycoside in a regio- and stereoselective manner.  相似文献   

13.
We report here the complete sequence of the mitochondrial (mt) genome of the pathogenic yeast Candida glabrata. This 20 kb mt genome is the smallest among sequenced hemiascomycetous yeasts. Despite its compaction, the mt genome contains the genes encoding the apocytochrome b (COB), three subunits of ATP synthetase (ATP6, 8 and 9), three subunits of cytochrome oxidase (COX1, 2 and 3), the ribosomal protein VAR1, 23 tRNAs, small and large ribosomal RNAs and the RNA subunit of RNase P. Three group I introns each with an intronic open reading frame are present in the COX1 gene. This sequence is available under accession number AJ511533.  相似文献   

14.
15.
We describe a novel plasma membrane cystine transporter, CgCYN1, from Candida glabrata, the first such transporter to be described from yeast and fungi. C. glabrata met15Δ strains, organic sulfur auxotrophs, were observed to utilize cystine as a sulfur source, and this phenotype was exploited in the discovery of CgCYN1. Heterologous expression of CgCYN1 in Saccharomyces cerevisiae met15Δ strains conferred the ability of S. cerevisiae strains to grow on cystine. Deletion of the CgCYN1 ORF (CAGL0M00154g) in C. glabrata met15Δ strains caused abrogation of growth on cystine with growth being restored when CgCYN1 was reintroduced. The CgCYN1 protein belongs to the amino acid permease family of transporters, with no similarity to known plasma membrane cystine transporters of bacteria and humans, or lysosomal cystine transporters of humans/yeast. Kinetic studies revealed a K(m) of 18 ± 5 μM for cystine. Cystine uptake was inhibited by cystine, but not by other amino acids, including cysteine. The structurally similar cystathionine, lanthionine, and selenocystine alone inhibited transport, confirming that the transporter was specific for cystine. CgCYN1 localized to the plasma membrane and transport was energy-dependent. Functional orthologues could be demonstrated from other pathogenic yeast like Candida albicans and Histoplasma capsulatum, but were absent in Schizosaccharomyces pombe and S. cerevisiae.  相似文献   

16.
Gu G  Wei G  Du Y 《Carbohydrate research》2004,339(6):1155-1162
An efficient and convergent synthesis of a regioselectively 6(V)-sulfated mannopentasaccharide derivative 1c, octyl 6-O-sulfo-alpha-D-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->3)-alpha-d-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranoside, was achieved by a '3 + 2' strategy. The target was designed to mimic the promising anticancer agent PI-88 and was obtained from the building blocks, octyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside, allyl 2,4,6-tri-O-benzoyl-3-O-(4-methoxybenzyl)-alpha-D-mannopyranoside, and 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (11), under TMSOTf-catalyzed glycosylation conditions. Compound 1c displays a mild anti-angiogenic activity based on a chorioallantoic membrane (CAM) model study.  相似文献   

17.
Aims:  To establish a system for screening and identification of essential genes from the pathogenic haploid yeast Candida glabrata by using temperature-sensitive (ts) mutants.
Methods and Results:  Based on the general concepts that ts mutations are generated within essential genes in the genome by virtue of point mutation, we attempted to establish a system where essential genes were screened and identified from the C. glabrata genomic DNA library by the complementation of ts point mutations. By using this system, we successfully identified a putative TEM1 homologue as an essential gene by the complementation of a point mutation (- G AT-/- A AT- corresponding to Asp-143/Asn substitution) within its coding region in a ts mutant, T-3.
Conclusions:  We were able to establish a system for screening and identification of the essential genes, such as the TEM1 homologue, from the pathogenic yeast C. glabrata, as the gene that complements ts mutation.
Significance and Impact of the Study:  The identification of essential genes, by using the present system, may provide novel potential antifungal targets.  相似文献   

18.
The fungal pathogen Candida glabrata encodes for a β-carbonic anhydrase (CA, EC 4.2.1.1), CgNce103, recently discovered. Only anions have been investigated as CgNce103 inhibitors up until now. Here we report the first sulfonamides inhibition study of this enzyme. Simple sulfonamides showed weak or moderate CgNce103 inhibitory properties, whereas acetazolamide, and a series of 4-substituted ureido-benzene-sulfonamides, sulfamates and sulfamides showed effective CgNce103 inhibitory properties, with KIs in the range of 4.1–115 nM, being also ineffective as human CA II inhibitors. As there is significant resistance of C. glabrata clinical isolates to many classical antifungal agents, inhibition of the β-CA from this organism may allow an interesting means of controlling the pathogen growth, eventually leading to antifungals with a novel mechanism of action.  相似文献   

19.
After extraction from whole cells, and purification by gel filtration, the chemical composition and molecular mass estimation of the cell-wall phosphopeptidomannan (PPM) showed no significant difference respectively between flocculent, weakly, very weakly and non-flocculent Kluyveromyces lactis yeast strains. However, when PPMs were tested as ligands of a lectin, extracted from the flocculent strain, the PPM isolated from the flocculent and weakly flocculent strain were recognized to a higher degree than those isolated from the non and very weakly flocculent strains. Acetolysis of PPM extracted from the four strains produced five oligosaccharide fractions corresponding to mono-, di-, tri-, penta-and hexa-saccharides. The flocculent strain was characterised by a high content of di-and penta-saccharides. The 1H NMR analysis of the oligosaccharides demonstrated that the flocculent strain contained equivalent levels of the two mannobioses: Man( 1 → 2)Man and Man( 1 → 3)Man and of the two mannotrioses Man( 1 → 2)Man( 1 → 2)Man and Man( 1 → 3)Man( 1 → 2)Man. In contrast, the non-flocculent and the very weakly flocculent strains contained a single type of mannobiose Man( 1 → 2)Man and one type of mannotriose Man( 1 → 2)Man( 1 → 2)Man.  相似文献   

20.
It is clear that C. albicans lipids have gained tremendous importance in recent years. In addition to being a barrier for entrance of various metabolites, it also provides the site of action for the synthesis of enzyme(s) involved in cell wall morphogenesis and antifungal action. While alterations in lipid composition during a yeast to mycelia transition have been observed, in most of the studies, lipid fluctuations reported could have been due to various environmental factors involved in the induction of morphogenesis [4,5]. A clear understanding of lipid biosynthesis and metabolic blocks due to antifungal action is likely to shed further light on selective interactions of antifungals. Despite the multifacet role of lipids in various functions of this pathogenic yeast, their exact involvement is poorly understood. The situation is little better with regard to ergosterol and its metabolism. Ergosterol is, indeed, important for anti-candidal activity and appears to be involved in the morphogenesis of C. albicans. The fluctuation in phospholipid composition have led to altered properties of plasma membrane namely, membrane fluidity, transport activities and drug sensitivity, which suggest that-a critical level of individual phospholipid is important for proper functioning of the plasma membrane. What the exact role is of individual phospholipid is far from clear. Many unanswered questions relating to the role of PI and sphingomyelin in signal transduction, involvement of phospholipases in the maintenance of phospholipid composition, and role of lipid transfer proteins in assembly and asymmetry of lipids are some aspects which merit further work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号