首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张长青  王进  高翔 《遗传》2008,30(5):620-626
TCH4基因在植物次生生长、疾病抵抗和逆境适应方面具有重要作用, 能被多种激素、环境和机械信号诱导表达。利用拟南芥TCH4的直系同源基因和芯片数据进行了启动子序列分析, 结果共识别出9个转录调控元件。它们均包含有已知元件序列, 并且在部分共表达基因和对应的直系同源基因启动子中排列顺序一致。根据已有TCH4基因启动子研究, 其中4个已被报道, 另5个为本研究新发现。根据预测结果进行知识整合, 构建了TCH4基因转录调控机制模型。  相似文献   

2.
The Arabidopsis touch (TCH) genes are up-regulated in response to various environmental stimuli, including touch, wind, and darkness. Previously, it was determined that TCH1 encodes a calmodulin; TCH2 and TCH3 encode calmodulin-related proteins. Here, we present the sequence and genomic organization of TCH3. TCH3 is composed of three repeats; remarkably, the first two repeats share 94% sequence identity, including introns that are 99% identical. The conceptual TCH3 product is 58 to 60% identical to known Arabidopsis calmodulins; however, unlike calmodulin, which has four Ca2+ binding sites, TCH3 has six potential Ca2+ binding domains. TCH3 is capable of binding Ca2+, as demonstrated by a Ca(2+)-specific shift in electrophoretic mobility. 5' Fragments of the TCH3 locus, when fused to the beta-glucuronidase (GUS) reporter gene, are sufficient to confer inducibility of expression following stimulation of plants with touch or darkness. These TCH3 sequences also direct expression to growing regions of roots, vascular tissue, root/shoot junctions, trichomes, branch points of the shoot, and regions of siliques and flowers. The pattern of expression of the TCH3/GUS reporter genes most likely reflects expression of the native TCH3 gene, because immunostaining of the TCH3 protein shows similar localization. The tissue-specific expression of TCH3 suggests that expression may be regulated not only by externally applied mechanical stimuli but also by mechanical stresses generated during development. Consequently, TCH3 may perform a Ca(2+)-modulated function involved in generating changes in cells and/or tissues that result in greater strength or flexibility.  相似文献   

3.
The Arabidopsis TCH genes were discovered as a consequence of their marked upregulation of expression in response to seemingly innocuous stimuli, such as touch. Further analyses have indicated that these genes are upregulated by a variety of diverse stimuli. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signalling pathways that enable plants to respond to changing environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicate that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that the TCH proteins may collaborate in cell wall biogenesis.  相似文献   

4.
To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.  相似文献   

5.
6.
Brassinosteroid (BR), an endogenous steroid growth regulator of higher plants, enhances expansion and division of the cell in a number of plant species. It has been recently reported that a shared auxin–BR signalling pathway is involved in the seedling growth in Arabidopsis . Here, we show that BR specifically enhanced the expression of AtACS4 , which encodes an auxin-responsive ACC synthase 4, by a distinct temporal induction mechanism compared with that of IAA in etiolated Arabidopsis seedlings. This BR induction of AtACS4 was undetectable in the light-grown seedlings. In addition, BR failed to activate the AtACS4 gene in auxin-resistant1 ( axr1-3 ) and auxin-resistant2 ( axr2-1 ), both of which are auxin-resistant mutants. Thus, it appears that there is a possible regulatory link between light, auxin and BR to control ethylene synthesis in Arabidopsis young seedlings. Analysis of transgenic Arabidopsis plants harbouring AtACS4::GUS fusion revealed the AtACS4 promoter-driven GUS activity in the highly elongating zone of the hypocotyls in response to BR treatment. Furthermore, Arabidopsis plants homozygous for the T-DNA insertion in the AtACS4 gene exhibited longer hypocotyls and roots than those of control seedlings. Taken together, these results suggest that the BR-induced ethylene production may participate in the elongation growth response in early seedling development of Arabidopsis .  相似文献   

7.
Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We identified TCH4 as a xyloglucan endotransglycosylase by sequence similarity and enzyme activity. Xyloglucan endotransglycosylases most likely modify cell walls, a fundamental determinant of plant form. We determined that TCH4 expression is regulated by auxin and brassinosteroids, by environmental stimuli, and during development, by a 1-kb region. Expression was restricted to expanding tissues and organs that undergo cell wall modification. Regulation of genes encoding cell wall-modifying enzymes, such as TCH4, may underlie plant morphogenetic responses to the environment.  相似文献   

8.
9.
Arabidopsis PsbQ, encoding a 16 kDa protein of the oxygen-evolving complex, is regulated by light and is expressed preferentially in leaf tissues. To analyze the components required for light-regulated and organ-specific expression of PsbQA, several promoter constructs were generated and expressed in tobacco. The 2.2 kb promoter could confer organ-specific expression of the reporter gene, whereas regulatory elements for light-dependent induction could not be located within this promoter and the transcribed region extending up to a second exon, represented by a genomic fragment encompassing the gene. The genomic fragment representing the transcribed region, however, could confer light regulation even on a constitutive promoter, as observed by steady-state mRNA analysis in T0 and T1 tobacco plants. The results obtained have led to the conclusion that regulatory elements for organ-specificity mainly reside in the promoter region whereas the transcribed region of the gene has an important role in light regulation.  相似文献   

10.
11.
In rice, the characterization of OsEBP-89 is inducible by various stress- or hormone-stimuli, including ethylene, abscisic acid (ABA), jasmonate acid (JA), drought and cold. Here, we report the investigation of essential DNA region within OsEBP-89 promoter for methyl jasmonic acid (MeJA) induction. PLACE analysis indicates that this promoter sequence contains multiple potential elements in response to various stimuli. First, we fused this promoter with GUS gene and analyzed its expression under MeJA treatment through Agrobacterium infiltration mediating transient expression in tobacco leaves. Our results revealed that this chimeric gene could be inducible by MeJA in tobacco leaves. To further de- termine the crucial sequences responsible for MeJA induction, we generated a series of deletion pro- moters which were fused with GUS reporter gene respectively. The results of transient expression of GUS gene driven by these mutant promoters show that the essential region for MeJA induction is po- sitioned in the region between -1200 and -800 in OsEBP-89 promoter containing a G-box (?1127), which is distinct from the essential region containing ERE (?562) for ACC induction. In all, our finding is helpful in understanding the molecular mechanism of OsEBP-89 expression under different stimuli.  相似文献   

12.
13.
A gene family encoding xyloglucan endotransglycosylase (XET)-related proteins exists in Arabidopsis. TCH4, a member of this family, is strongly up-regulated by environmental stimuli and encodes an XET capable of modifying cell wall xyloglucans. To investigate XET localization we generated antibodies against the TCH4 carboxyl terminus. The antibodies recognized TCH4 and possibly other XET-related proteins. These data indicate that XETs accumulate in expanding cell, at the sites of intercellular airspace formation, and at the bases of leaves, cotyledons, and hypocotyls. XETs also accumulated in vascular tissue, where cell wall modifications lead to the formation of tracheary elements and sieve tubes. Thus, XETs may function in modifying cell walls to allow growth, airspace formation, the development of vasculature, and reinforcement of regions under mechanical strain. Following wind stimulation, overall XET levels appeared to decrease in the leaves of wind-stimulated plants. However, consistent with an increase in TCH4 mRNA levels following wind, there were regions that showed increased immunoreaction, including sites around cells of the pith parenchyma, between the vascular elements, and within the epidermis. These results indicate that TCH4 may contribute to the adaptive changes in morphogenesis that occur in Arabidopsis following exposure to mechanical stimuli.  相似文献   

14.
15.
16.
TCH3 is an Arabidopsis t ou ch ( TCH ) gene isolated as a result of its strong and rapid upregulation in response to mechanical stimuli, such as touch and wind. TCH3 encodes an unusual calcium ion-binding protein that is closely related to calmodulin but has the potential to bind six calcium ions. Here it is shown that TCH3 shows a restricted pattern of accumulation during Arabidopsis vegetative development. These data provide insight into the endogenous signals that may regulate TCH3 expression and the sites of TCH3 action. TCH3 is abundant in the shoot apical meristem, vascular tissue, the root columella and pericycle cells that give rise to lateral roots. In addition, TCH3 accumulation in cells of developing shoots and roots closely correlates with the process of cellular expansion. Following wind stimulation, TCH3 becomes more abundant in specific regions including the branchpoints of leaf primordia and stipules, pith parenchyma, and the vascular tissue. The consequences of TCH3 upregulation by wind are therefore spatially restricted and TCH3 may function at these sites to modify cell or tissue characteristics following mechanical stimulation. Because TCH3 accumulates specifically in cells and tissues that are thought to be under the influence of auxin, auxin levels may regulate TCH3 expression during development. TCH3 is upregulated in response to low levels of exogenous indole-3-acetic acid (IAA), but not by inactive auxin-related compounds. These results suggest that TCH3 protein may play roles in mediating physiological responses to auxin and mechanical environmental stimuli.  相似文献   

17.
Hypocotyl growth occurs as a result of an interaction between environmental factors and endogenous phytohormones. In Arabidopsis, high temperature promotes auxin synthesis to increase hypocotyl growth. We previously showed that exogenously provided auxin stimulates expression of the brassinosteroid (BR) biosynthetic gene DWARF4. To determine whether temperature-induced hypocotyl elongation depends on BR biosynthesis, we examined the morphological responses to high temperature and the expression pattern of DWF4pro:GUS in different genetic backgrounds, which are as follows: Ws-2 wild-type, iaa19/msg2, bri1-5, and dwf7-1. In contrast to the wild-type, growth of the three genotypes at 29°C did not significantly increase hypocotyl length; whereas, with the exception of iaa19/msg2, the roots were elongated. These results confirm that BR biosynthesis and signaling pathways are required for hypocotyl growth at high temperature. Furthermore, a GUS histochemical assay revealed that a temperature of 29°C greatly increased DWF4pro:GUS expression in the shoot and root tips compared to a temperature of 22°C. Quantitative measurements of GUS activity in DWF4pro:GUS revealed that growth at 29°C is similar to the level of growth after addition of 100 nM IAA to the medium. Our results suggest that temperature-dependent synthesis of free auxin stimulates BR biosynthesis, particularly via the key biosynthetic gene DWF4, and that the BRs thus synthesized are involved in hypocotyl growth at high temperature.  相似文献   

18.
Plant steroid hormones, brassinosteroids (BRs), are perceived by a cell surface receptor kinase, BRI1, but how BR binding leads to regulation of gene expression in the nucleus is unknown. Here we describe the identification of BZR1 as a nuclear component of the BR signal transduction pathway. A dominant mutation bzr1-1D suppresses BR-deficient and BR-insensitive (bri1) phenotypes and enhances feedback inhibition of BR biosynthesis. BZR1 protein accumulates in the nucleus of elongating cells of dark-grown hypocotyls and is stabilized by BR signaling and the bzr1-1D mutation. Our results demonstrate that BZR1 is a positive regulator of the BR signaling pathway that mediates both downstream BR responses and feedback regulation of BR biosynthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号