共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung function is inextricably linked to mechanics. On short timescales every breath generates dynamic cycles of cell and matrix stretch, along with convection of fluids in the airways and vasculature. Perturbations such airway smooth muscle shortening or surfactant dysfunction rapidly alter respiratory mechanics, with profound influence on lung function. On longer timescales, lung development, maturation, and remodeling all strongly depend on cues from the mechanical environment. Thus mechanics has long played a central role in our developing understanding of lung biology and respiratory physiology. This concise review focuses on progress over the past 5 years in elucidating the molecular origins of lung mechanical behavior, and the cellular signaling events triggered by mechanical perturbations that contribute to lung development, homeostasis, and injury. Special emphasis is placed on the tools and approaches opening new avenues for investigation of lung behavior at integrative cellular and molecular scales. We conclude with a brief summary of selected opportunities and challenges that lie ahead for the lung mechanobiology research community. 相似文献
2.
3.
The central retina mediates high acuity vision, and its progressive dysfunction due to macular degeneration is the leading cause of visual disability among adults in industrialized societies. Here, we summarize recent progress in understanding the pathophysiology of macular degeneration and the implications of this new knowledge for treatment and prevention. The past decade has witnessed remarkable advances in this field, including the development of new, non-invasive retinal imaging technologies, the development of animal models for macular disease, and the isolation of many of the genes responsible for both early- and late-onset macular diseases. These advances have set the stage for the development of effective mechanism-based therapies. 相似文献
4.
5.
6.
7.
Defective or inefficient apoptosis is an acquired hallmark of cancer cells. Thus, a thorough understanding of apoptotic signaling pathways and insights into apoptosis resistance mechanisms are imperative to unravel novel drug targets for the design of more effective and target selective therapeutic strategies. This review aims at providing an overview of the recent understanding of apoptotic signaling pathways, the main mechanisms by which cancer cells resist apoptotic insults, and discusses some recent attempts to target the mitochondrion for restoring efficient cell death signaling in cancer cells. 相似文献
8.
9.
A number of gender differences exist in the human electrocardiogram (ECG): the P-wave and P-R intervals are slightly longer in men than in women, whilst women have higher resting heart rates than do men, but a longer rate-corrected QT (QTC) interval. Women with the LQT1 and LQT2 variants of congenital long-QT syndrome (LQTS) are at greater risk of adverse cardiac events. Similarly, many drugs associated with acquired LQTS have a greater risk of inducing torsades de pointes (TdP) arrhythmia in women than in men. There are also male:female differences in Brugada syndrome, early repolarisation syndrome and sudden cardiac death. The differences in the ECG between men and women, and in particular those relating to the QT interval, have been explored experimentally and provide evidence of differences in the processes underlying ventricular repolarization. The data available from rabbit, canine, rat, mouse and guinea pig models are reviewed and highlight involvement of male:female differences in Ca and K currents, although the possible involvement of rapid and persistent Na current and Na–Ca exchange currents cannot yet be excluded. The mechanisms underlying observed differences remain to be elucidated fully, but are likely to involve the influence of gonadal steroids. With respect to the QT interval and risk of TdP, a range of evidence implicates a protective role of testosterone in male hearts, possibly by both genomic and non-genomic pathways. Evidence regarding oestrogen and progesterone is less unequivocal, although the interplay between these two hormones may influence both repolarization and pro-arrhythmic risk. 相似文献
10.
11.
12.
13.
Serotonin is an important neurohormonal factor that has been implicated in cardiovascular function. It can regulate vascular tone, act directly on cardiomyocytes and stimulate chemosensitive nerves in the heart. Cardiovascular dysfunction is observed when serotonin signaling is altered or when variation in serotonin concentration occurs. Recent studies have provided evidence that, in the absence of peripheral serotonin synthesis, blood serotonin (which is almost exclusively stored in platelets) is markedly reduced, and that this drop leads to heart failure. This implies that the level of circulating serotonin is a key factor in maintaining normal cardiovascular activity. These findings offer new prospects for the use of serotonin in therapies for cardiovascular diseases. 相似文献
14.
15.
Resin acids are tricyclic diterpenoids that are found in the oleoresin of coniferous trees. Resin-acid-degrading microorganisms
are ubiquitous in the environment. The bacterial isolates that grow on resin acids as sole organic substrates are physiologically
and phylogenetically diverse, and include psychrotolerant, mesophilic, and thermophilic bacteria. Recent studies of the biodegradation
of resin acids by these organisms have demonstrated that in gram-negative bacteria, distinct biochemical pathways exist for
the degradation of abietane- and pimerane-type resin acids. One of these organisms, Pseudomonas abietaniphila BKME-9, harbors a convergent pathway that channels the nonaromatic abietanes and dehydroabietic acid into 7-oxodehydroabietic
acid. This dioxygenolytic pathway is encoded by the recently cloned and sequenced dit gene cluster. The dit cluster encodes the ferredoxin and the α- and β-subunits of a new class of ring-hydroxylating dioxygenases as well as an
extradiol ring-cleavage dioxygenase. Although it was previously thought that resin acids are very recalcitrant under anoxic
conditions, recent investigations have demonstrated that they are partially metabolized under anoxic conditions by undefined
microorganisms. The anaerobic degradation of resin acids principally generates aromatized and decarboxylated products (such
as retene) that are thought to persist in the environment.
Received: 9 April 1999 / Accepted: 1 July 1999 相似文献
16.
Recent advances in cancer stem cells 总被引:5,自引:0,他引:5
The theory of cancer stem cells states that a subset of cancer cells within a tumor has the ability to self-renew and differentiate. Only those cells within a tumor that have these two properties are called cancer stem cells. This concept was first demonstrated in the study of leukemia where only cells with specific surface antigen profiles were able to cause leukemia when engrafted into immunodeficient mice. In recent years solid tumors were studied utilizing similar techniques in mice. Human tumors where evidence of cancer stem cells has been published include tumors of the breast, brain, pancreas, head and neck, and colon. If this difference in tumorigenicity of cancer cells also occurs in patients, then the ability to enrich for cancer stem cells lays an important groundwork for future studies where mechanisms involved in cancer stem cells can now be investigated. 相似文献
17.
Pon Velayutham Anandh Babu Dongmin Liu Elizabeth R. Gilbert 《The Journal of nutritional biochemistry》2013,24(11):1777-1789
Flavonoids are polyphenolic compounds that are abundant in fruits and vegetables, and increasing evidence demonstrates a positive relationship between consumption of flavonoid-rich foods and disease prevention. Epidemiological, in vitro and animal studies support the beneficial effects of dietary flavonoids on glucose and lipid homeostasis. It is encouraging that the beneficial effects of some flavonoids are at physiological concentrations and comparable to clinically-used anti-diabetic drugs; however, clinical research in this field and studies on the anti-diabetic effects of flavonoid metabolites are limited. Flavonoids act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, hepatocytes, adipocytes and skeletal myofibers. Flavonoids may exert beneficial effects in diabetes by (i) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells; (ii) improving hyperglycemia through regulation of glucose metabolism in hepatocytes; (iii) reducing insulin resistance, inflammation and oxidative stress in muscle and fat and (iv) increasing glucose uptake in skeletal muscle and white adipose tissue. This review highlights recent findings on the anti-diabetic effects of dietary flavonoids, including flavan-3-ols, flavanones, flavonols, anthocyanidins, flavones and isoflavones, with particular emphasis on the studies that investigated the cellular and molecular mechanisms involved in the beneficial effects of the compounds. 相似文献
18.
RNA splicing dysregulation is widespread in cancer. Accumulating evidence demonstrates that splicing defects resulting from splicing dysregulation play critical roles in cancer pathogenesis and can serve as new biomarkers and therapeutic targets for cancer intervention. These findings have greatly deepened the mechanistic understandings of the regulation of alternative splicing in cancer cells, leading to rapidly growing interests in targeting cancer-related splicing defects as new therapies. Here we summarize the current research progress on splicing dysregulation in cancer and highlight the strategies available or under development for targeting RNA splicing defects in cancer. 相似文献
19.
Although its presence in mammalian tissues has been known since the 1960s, N-palmitoyl-ethanolamine (PEA) has emerged only recently among other bioactive N-acylethanolamines as an important local pro-homeostatic mediator which, due to its chemical stability, can be also administered exogenously as the active principle of current anti-inflammatory and analgesic preparations (e.g. Normast®, Pelvilen®). Much progress has been made towards the understanding of the mechanisms regulating both the tissue levels of PEA under physiological and pathological conditions, and its pharmacological actions. Here we review these new developments in PEA biochemistry and pharmacology, and discuss novel potential indications for the therapeutic use of this compound and of synthetic tools that selectively retard its catabolism, such as the inhibitors of the recently cloned N-acylethanolamine-hydrolyzing acid amidase. 相似文献
20.
Accumulating evidence suggests that Mcl-1 plays a critical pro-survival role in the development and maintenance of both normal and malignant tissues. Regulation of Mcl-1 expression occurs at multiple levels, allowing for either the rapid induction or elimination of the protein in response to different cellular events. This suggests that Mcl-1 can play an early role in response to signals directing either cell survival or cell death. Deregulation of pathways regulating Mcl-1 that result in its over-expression likely contribute to a cell's inability to properly respond to death signals possibly leading to cell immortalization and tumorigenic conversion. Correspondingly, Mcl-1 has been shown to be up-regulated in numerous hematological and solid tumor malignancies. Moreover, this up-regulation appears to be a factor in the resistance of some cancer types to conventional cancer therapies. Mechanisms that abrogate the pro-survival function of Mcl-1 either by diminishing its levels or inactivating its functional BH3 groove have shown promise for the combinational treatment with existing cancer therapies and as single agents in certain malignancies. Here we review the various pathways that regulate Mcl-1 expression and describe agents that are currently under development to modulate Mcl-1 activity for therapeutic benefit in oncology. 相似文献