首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The inhibition efficiency (antioxidant activity) of hydroxy derivatives of coumarin, such as esculetin, dicumarol, and fraxetin, was studied in the methemalbumin-H2O2-tetramethylbenzidine (TMB) pseudoperoxidase system at 20 degrees C in a buffered physiological solution (pH 7.4) containing 6% DMF and 0.25% DMSO. The inhibitor's efficiency was quantitatively characterized by the inhibition constants (K(i), microM) and the inhibition degree (%). The K(i) values for esculetin, dicumarol, and fraxetin were 9.5, 15, and 26 microM, respectively. Esculetin and fraxetin inhibited pseudoperoxidase oxidation of TMB in a noncompetitive manner; dicumarol, in a mixed manner. The inhibiting activity ofesculetin in peroxidase-catalyzed TMB oxidation at pH 6.4 is characterized by a K(i) value equal to 1.15 microM, and the inhibition process is competitive. Esculetin was found to be the most effective antioxidant of plant origin among all derivatives previously studied in model biochemical systems.  相似文献   

2.
In this study, we have examined the effects of a range of organotin compounds (mono-, di-, tributyltin, mono-, di-, trioctyltin) on the activities of rat testis microsomal 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 17-hydroxylase (17-OHase) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). 17-OHase activity was inhibited by more than 50% compared with the control rate by 59 microM tributyltin (TBT) but other organotin compounds showed no inhibition. 17beta-HSD activity was unaffected by all organotins tested. 3beta-HSD was inhibited by monooctyltin (81 microM) and by TBT at all concentrations tested in a dose-dependent manner, with almost complete loss of activity at TBT concentrations of 12 microM. The mechanism of inhibition of 3beta-HSD was investigated in kinetic analysis with 0-12 microM TBT. Three rat testis microsomal preparations were incubated with dehydroepiandrosterone as the steroid substrate ranging from 1 to 10,000 nM. Tributyltin was primarily a competitive inhibitor of 3beta-HSD activity, causing an increase in the value of the K(m(app)). However, the mechanism was not entirely competitive as while there was an increase in K(m(app)), a decrease in the V(max(app)) was also observed with increasing concentrations of TBT. Slope and intercept replots demonstrated that the K(i)((app)) from slope replots was around 2.7 microM whereas the K(i)((app)) value from intercept replots was around 30 microM. When compared with the K(m(app)) for 3beta-HSD of around 0.42 microM, TBT could be an effective inhibitor of this enzyme.  相似文献   

3.
Horton TE  DeRose VJ 《Biochemistry》2000,39(37):11408-11416
The effects of Co(NH(3))(6)(3+) on the hammerhead ribozyme are analyzed using several techniques, including activity measurements, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies and thermal denaturation studies. Co(NH(3))(6)(3+) efficiently displaces Mn(2+) bound to the ribozyme with an apparent dissociation constant of K(d app) = 22 +/- 4.2 microM in 500 microM Mn(2+) (0.1 M NaCl). Displacement of Mn(2+) coincides with Co(NH(3))(6)(3+) inhibition of hammerhead activity in 500 microM Mn(2+), reducing the activity of the WT hammerhead by approximately 15-fold with an inhibition constant of K(i) = 30.9 +/- 2.3 microM. A residual 'slow' activity is observed in the presence of Co(NH(3))(6)(3+) and low concentrations of Mn(2+). Under these conditions, a single Mn(2+) ion remains bound and has a low-temperature EPR spectrum identical to that observed previously for the highest affinity Mn(2+) site in the hammerhead ribozyme in 1 M NaCl, tentatively attributed to the A9/G10.1 site [Morrissey, S. R. , Horton, T. E., and DeRose, V. J. (2000) J. Am. Chem. Soc. 122, 3473-3481]. Circular dichroism and thermal denaturation experiments also reveal structural effects that accompany the observed inhibition of cleavage and Mn(2+) displacement induced by addition of Co(NH(3))(6)(3+). Taken together, the data indicate that a high-affinity Co(NH(3))(6)(3+) site is responsible for significant inhibition accompanied by structural changes in the hammerhead ribozyme. In addition, the results support a model in which at least two types of metal sites, one of which requires inner-sphere coordination, support hammerhead activity.  相似文献   

4.
We investigated the effect of non-esterified fatty acids (FAs) on bovine heart hexokinase (type I: ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1). Long chain FAs (C14 to C20) inhibited the enzyme in a way that correlated positively with both the chain length and the degree of unsaturation. Medium chain FA with 12 or less carbons activated hexokinase in a chain length dependent manner with the greater activation shown by laurate. The activation constant of laurate was 91.5 microM with a maximal activation of 60.3%. Oleate caused a maximal decrease in specific activity of 25% with an inhibition constant of 79 microM. Using the fluorescent probe cis-parinarate, we found a saturable binding site with K(d) of 3.5 microM. Oleate competed the fluorescent probe from the protein with a K(d) of 1.4 microM. Medium chain FAs did not compete the probe from HK. The binding of fatty acid to the protein appears to be entropically driven as indicated by an Arrhenius analysis (DeltaS=+231.6 J mol(-1) deg(-1)). The presence of oleate significantly increased the K(ATP)(m) from 0.47 mM to 0.89 mM while the K(glucose)(m) in the presence of the FA (0.026+/-0.003 mM) was not significantly different from the control (0.014+/-0.004 mM). A decrease in V(max) values in the presence of oleate indicated that a mixed allosteric inhibition was operating.  相似文献   

5.
麻醉是果蝇实验中最基本的操作,乙醚是最常用的麻醉剂。但因为乙醚是二类易制毒化学品而被国家控制使用。报道一种容易获得的试剂——乙酸乙酯对果蝇的麻醉效果。实验采用的麻醉室大小为125cm3,每处理20~30只果蝇,乙酸乙酯剂量为40、80、120μL,以同等剂量的乙醚为对照,每个实验重复4次,用所有果蝇完全麻醉后20min及120min时的未苏醒率为指标评估麻醉效果及安全性。结果表明:乙酸乙酯对果蝇具有麻醉作用;麻醉时乙酸乙酯开始起效应的时间略晚于同等剂量的乙醚,但使果蝇完全麻醉的时间却比同等剂量的乙醚略短或相接近;麻醉持续的时间则长于同等剂量的乙醚。乙酸乙酯麻醉的果蝇,90%以上的果蝇均在120min内苏醒,表明在这些剂量范围内是安全的。乙酸乙酯完全可以替代乙醚用于果蝇的麻醉。  相似文献   

6.
Inhibition of dipeptidyl peptidase IV (DPP-IV) has been proposed recently as a therapeutic approach to the treatment of type 2 diabetes. N-Substituted-glycyl-2-cyanopyrrolidide compounds, typified by NVP-DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S )-p yrrolidine), inhibit degradation of glucagon-like peptide-1 (GLP-1) and thereby potentiate insulin release in response to glucose-containing meals. In the present study NVP-DPP728 was found to inhibit human DPP-IV amidolytic activity with a K(i) of 11 nM, a k(on) value of 1.3 x 10(5) M(-)(1) s(-)(1), and a k(off) of 1.3 x 10(-)(3) s(-)(1). Purified bovine kidney DPP-IV bound 1 mol/mol [(14)C]-NVP-DPP728 with high affinity (12 nM K(d)). The dissociation constant, k(off), was 1.0 x 10(-)(3) and 1.6 x 10(-)(3) s(-)(1) in the presence of 0 and 200 microM H-Gly-Pro-AMC, respectively (dissociation t(1/2) approximately 10 min). Through kinetic evaluation of DPP-IV inhibition by the D-antipode, des-cyano, and amide analogues of NVP-DPP728, it was determined that the nitrile functionality at the 2-pyrrolidine position is required, in the L-configuration, for maximal activity (K(i) of 11 nM vs K(i) values of 5.6 to >300 microM for the other analogues tested). Surprisingly, it was found that the D-antipode, despite being approximately 500-fold less potent than NVP-DPP728, displayed identical dissociation kinetics (k(off) of 1.5 x 10(-)(3) s(-)(1)). NVP-DPP728 inhibited DPP-IV in a manner consistent with a two-step inhibition mechanism. Taken together, these data suggest that NVP-DPP728 inhibits DPP-IV through formation of a novel, reversible, nitrile-dependent complex with transition state characteristics.  相似文献   

7.
The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high K(s) value (20 to 40 mM) for MTBE.  相似文献   

8.
9.
We report the results of a three-dimensional quantitative structure-activity relationship (3D-QSAR)/comparative molecular field analysis (CoMFA) of the activity of 18 bisphosphonates and imidodiphosphate in the inhibition of a mung bean (Vigna radiata L.) vacuolar proton pumping pyrophosphatase (V/H(+)-PPase; EC 3.6.1.1). We find an experimental versus QSAR predicted pK(app)(i) R(2) value of 0.89, a cross-validated R(2) = 0.77, and a bootstrapped R(2) = 0.89 for 18 bisphosphonates plus imidodiphosphate over the 1.3 microM to 425 microM range of K(app)(i) values. We also demonstrate that this approach has predictive utility (a 0.26 pK(app)(i) rms error for three test sets of 3 activity predictions each), corresponding to about a factor of two error in K(app)(i) prediction. The 3D-QSAR/CoMFA approach provides a quantitative method for predicting the activity of V/H(+)-PPase inhibitors and is likely to be of use in the design of novel pharmacological agents since all of the major human disease-causing parasitic protozoa contain large levels of pyrophosphate, together with V-type proton-pumping pyrophosphatases located in plant-like vacuoles (acidocalcisomes), which are absent in their mammalian hosts.  相似文献   

10.
In order to anaesthetize insects in a laboratory, chilling and application of diethyl ether and carbon dioxide are commonly used. However none of the above methods is problem free. In particular, the use of diethyl ether, despite its simplicity, is now limited due to its poor safety. In our research, we evaluated ethyl acetate as an alternative anaesthetic substance. The effects of ethyl acetate anaesthesia were compared with those produced by carbon dioxide on adult green lacewings (Neuroptera: Chrysopidae). The biological parameters measured were longevity and fecundity. No significant differences appeared between the two treatments and the control. Although further research is necessary, the use of ethyl acetate proves to be very promising and presents a valid alternative to the use of diethyl ether and, in many cases, also to carbon dioxide and chilling.  相似文献   

11.
NAD(P)H:quinone oxidoreductase (NQO1; EC 1.6.99.2) catalyzes a two-electron transfer involved in the protection of cells from reactive oxygen species. These reactive oxygen species are often generated by the one-electron reduction of quinones or quinone analogs. We report here on the previously unreported Fe(III) reduction activity of human NQO1. Under steady state conditions with Fe(III) citrate, the apparent Michaelis-Menten constant (Km(app)) was approximately 0.3 nM and the apparent maximum velocity (Vmax(app)) was 16 U mg(-1). Substrate inhibition was observed above 5 nM. NADH was the electron donor, Km(app)= 340 microM and Vmax(app) = 46 Umg(-1). FAD was also a cofactor with a Km(app) of 3.1 microM and Vmax(app) of 89 U mg(-1). The turnover number for NADH oxidation was 25 s(-1). Possible physiological roles of the Fe(III) reduction by this enzyme are discussed.  相似文献   

12.
Laccase (E.C. 1.10.3.2) from Trametes versicolor was immobilized (adsorbed) by drying on various supports (glass, glass powder, silica gel, and Nylon 66 membrane). The enzyme activity and stability were determined in diethyl ether, ethyl acetate, and methylene chloride. The initial rate for the oxidation of syringaldazine varied up to 245-fold depending on the solvent and support, the best results being obtained with Nylon 66 membrane. No inactivation of immobilized laccase over 72 h was observed in diethyl ether and ethyl acetate, while exposure to methylene chloride resulted in significant activity decreases regardless of the support material.  相似文献   

13.
14.
In excitable cells, hypoxia inhibits K channels, causes membrane depolarization, and initiates complex adaptive mechanisms. It is unclear whether K channels of alveolar epithelial cells reveal a similar response to hypoxia. A549 cells were exposed to hypoxia during whole cell patch-clamp measurements. Hypoxia reversibly inhibited a voltage-dependent outward current, consistent with a K current, because tetraethylamonium (TEA; 10 mM) abolished this effect; however, iberiotoxin (0.1 microM) does not. In normoxia, TEA and iberiotoxin inhibited whole cell current (-35%), whereas the K-channel inhibitors glibenclamide (1 microM), barium (1 mM), chromanol B293 (10 microM), and 4-aminopyridine (1 mM) were ineffective. (86)Rb uptake was measured to see whether K-channel modulation also affected transport activity. TEA, iberiotoxin, and 4-h hypoxia (1.5% O(2)) inhibited total (86)Rb uptake by 40, 20, and 35%, respectively. Increased extracellular K also inhibited (86)Rb uptake in a dose-dependent way. The K-channel opener 1-ethyl-2-benzimidazolinone (1 mM) increased (86)Rb uptake by 120% in normoxic and hypoxic cells by activation of Na-K pumps (+60%) and Na-K-2Cl cotransport (+170%). However, hypoxic transport inhibition was also seen in the presence of 1-ethyl-2-benzimidazolinone, TEA, and iberiotoxin. These results indicate that hypoxia, membrane depolarization, and K-channel inhibition decrease whole cell membrane currents and transport activity. It appears, therefore, that a hypoxia-induced change in membrane conductance and membrane potential might be a link between hypoxia and alveolar ion transport inhibition.  相似文献   

15.
Mechanism of nitrogenase switch-off by oxygen.   总被引:5,自引:1,他引:4       下载免费PDF全文
Oxygen caused a reversible inhibition (switch-off) of nitrogenase activity in whole cells of four strains of diazotrophs, the facultative anaerobe Klebsiella pneumoniae and three strains of photosynthetic bacteria (Rhodopseudomonas sphaeroides f. sp. denitrificans and Rhodopseudomonas capsulata strains AD2 and BK5). In K. pneumoniae 50% inhibition of acetylene reduction was attained at an O2 concentration of 0.37 microM. Cyanide (90 microM), which did not affect acetylene reduction but inhibited whole-cell respiration by 60 to 70%, shifted the O2 concentration that caused 50% inhibition of nitrogenase activity to 2.9 microM. A mutant strain of K. pneumoniae, strain AH11, has a respiration rate that is 65 to 75% higher than that of the wild type, but its nitrogenase activity is similar to wild-type activity. Acetylene reduction by whole cells of this mutant was inhibited 50% by 0.20 microM O2. Inhibition by CN- of 40 to 50% of the O2 uptake in the mutant shifted the O2 concentration that caused 50% inhibition of nitrogenase to 1.58 microM. Thus, when the respiration rates were lower, higher oxygen concentrations were required to inhibit nitrogenase. Reversible inhibition of nitrogenase activity in vivo was caused under anaerobic conditions by other electron acceptors. Addition of 2 mM sulfite to cell suspensions of R. capsulata B10 and R. sphaeroides inhibited nitrogenase activity. Nitrite also inhibited acetylene reduction in whole cells of the photodenitrifier R. sphaeroides but not in R. capsulata B10, which is not capable of enzymatic reduction of NO2-. Lower concentrations of NO2- were required to inhibit the activity in NO3- -grown cells, which have higher activities of nitrite reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients is developed and presented. The method was validated by applying it to data obtained from batch kinetics of the aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) by a butane-grown mixed culture. The maximum degradation rates (k(max)) and half-saturation coefficients (K(s)) were independently determined in single compound tests, and compared with those obtained from inhibition tests. The inhibition type was determined using direct linear plots at various substrate and inhibitor concentrations. Kinetic parameters (k(max) and K(s)) and inhibition coefficients (K(ic) and K(iu)) were determined by nonlinear least squares regression (NLSR) fits of the inhibition model determined from the direct linear plots. Initial guesses of the kinetic parameters for NLSR were determined from linearized inhibition equations that were derived from the correlations between apparent maximum degradation rates (k(app)(max)) and/or the apparent half-saturation coefficient (K(app)(s)) and the k(max), K(s), and inhibitor concentration (I(L)) for each inhibition equation. Two different inhibition types were indicated from the direct linear plots: competitive inhibition of 1,1,1-TCA on butane degradation, and mixed inhibition of 1,1,1-TCA transformation by butane. Good agreement was achieved between independently measured k(max) and K(s) values and those obtained from both NLSR and the linearized inhibition equations. The initial guesses of all the kinetic parameters determined from linear plots were in the range of the values estimated from NLSR analysis. Overall the results show that use of the direct linear plot method to identify the inhibition type, coupled with initial guesses from linearized plots for NLSR analysis, results in an accurate method for determining inhibition types and coefficients. Detailed studies with pure cultures and purified enzymes are needed to further demonstrate the utility of this method.  相似文献   

17.
Plasmalogens are a subclass of glycerophospholipids that are enriched in the plasma membrane of many mammalian cells. The vinyl ether bond of plasmalogens renders them susceptible to oxidation. Accordingly, it was hypothesized that reactive brominating species, a unique oxidant formed at the sites of eosinophil activation, such as in asthma, might selectively target plasmalogens for oxidation. Here we show that reactive brominating species produced by the eosinophil peroxidase system of activated eosinophils attack the vinyl ether bond of plasmalogens. Reactive brominating species produced by eosinophil peroxidase target the vinyl ether bond of plasmalogens resulting in the production of a neutral lipid and lysophosphatidylcholine. Chromatographic and mass spectrometric analyses of this neutral lipid demonstrated that it was 2-bromohexadecanal (2-BrHDA). Reactive brominating species produced by eosinophil peroxidase attacked the plasmalogen vinyl ether bond at acidic pH. Bromide was the preferred substrate for eosinophil peroxidase, and chloride was not appreciably used even at a 1000-fold molar excess. Furthermore, 2-BrHDA production elicited by eosinophil peroxidase-derived reactive brominating species in the presence of 100 microM NaBr doubled with the addition of 100 mM NaCl. The potential physiological significance of this pathway was suggested by the demonstration that 2-BrHDA was produced by phorbol myristate acetate-stimulated eosinophils and by the demonstration that 2-BrHDA is a phagocyte chemoattractant. Taken together, the present studies demonstrate the targeting of the vinyl ether bond of plasmalogens by the reactive brominating species produced by eosinophil peroxidase and by activated eosinophils, resulting in the production of brominated fatty aldehydes.  相似文献   

18.
Na/HCO(3) cotransporters (NBCs) are important regulators of intracellular pH (pH(i) in a variety of organ systems where acid-base status is critical for tissue function. To characterize the pharmacology of NBCs in more detail, we used the two-electrode voltage-clamp technique to examine the effect of previously identified inhibitors of anion exchanger 1 (AE1) on the activity of rat NBCe1-A expressed in Xenopus laevis oocytes. NBC-expressing oocytes voltage-clamped at -60 mV and exposed to a 5% CO(2)/33 mM HCO(3)(-) solution displayed NBC-mediated outward currents that were inhibited by either niflumic acid or one of the two bis-oxonol dyes diBA(3)C4 and diBA(5)C4. NBCe1-A was less sensitive to niflumic acid (apparent K(i) of 100 microM) than 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, apparent K(i) of 36 microM) but more sensitive to the diBAC dyes (apparent K(i) of approximately 10 microM). Based on current-voltage relationships, the diBAC dyes inhibited HCO(3)(-) -induced NBCe1-mediated inward currents more so than outward currents. NBCe1 sensitivity to the dyes was (1) lower in the presence of 40 microM DIDS, (2) unaffected by changes in external HCO(3)(-) concentration and (3) only modestly higher at an external Na(+) concentration of 5, but not 15 or 33, mM. Therefore, the diBAC dyes compete with DIDS but not appreciably with Na(+) or HCO(3)(-) for binding. The mechanism of diBAC inhibition of NBCe1 appears similar to that previously reported for AE1.  相似文献   

19.
Five flavones displaying tyrosinase inhibitory activity were isolated from the stem barks of Morus lhou (S.) Koidz., a cultivated edible plant. The isolated compounds were identified as mormin (1), cyclomorusin (2), morusin (3), kuwanon C (4), and norartocarpetin (5). Mormin (1) was characterized as a new flavone possesing a 3-hydroxymethyl-2-butenyl at C-3. The inhibitory potencies of these flavonoids toward monophenolase activity of mushroom tyrosinase were investigated. The IC50 values of compounds 1-5 for monophenolase activity were determined to be 0.088, 0.092, 0.250, 0.135 mM, and 1.2 microM, respectively. Mormin (1), cyclomorusin (2), kuwanon C (4) and norartocarpetin (5) exhibited competitive inhibition characteristics. Interestingly norartocarpetin (5) showed a time-dependent inhibition against oxidation of L-tyrosine: it also operated under the enzyme isomerization model (k5 = 0.8424 min(-1), k6 = 0.0576 min(-1), K(app)(i) = 1.354 microM).  相似文献   

20.
Aerobic bacterial growth on aromatic hydrocarbons typically requires oxygenase enzymes, which are known to fortuitously oxidize nongrowth substrates. In this study, we found that oxidation of diethyl ether by toluene 2-monooxygenase supported more rapid growth of Burkholderia cepacia G4/PR1 than did the aromatic substrates n-propylbenzene and o-xylene. The wild-type Burkholderia cepacia G4 failed to grow on diethyl ether. Purified toluene 2-monooxygenase protein components oxidized diethyl ether stoichiometrically to ethanol and acetaldehyde. Butyl methyl ether, diethyl sulfide, and 2-chloroethyl ethyl ether were oxidized by B. cepacia G4/PR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号