首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional gel electrophoresis (2D)1 is a powerful technique used to separate complex protein mixtures. The technique involves the separation of proteins by charge in the first dimension and by molecular weight in the second dimension. The effect of substituting various detergents for sodium dodecyl sulfate (SDS) in the second dimension (PAGE) was investigated. Individual C-10 through C-14 alkyl sulfates, C-11 through C-14 alkyl sulfonates, sodium N-lauroyl-N-methyl-taurine, N-lauroylsarcosine, sodium laurate, or benzyldimethyl-n-hexadecylammonium chloride were substituted for SDS in equilibration buffer, gel buffer, and upper running buffer. The cationic benzyldimethyl-n-hexadecylammonium chloride system was run with reversed polarity. Dramatic effects on protein migration from human mesothelial cell extracts were observed when different detergents were utilized. The C-12 (SDS) through C-14 alkyl sulfates and sulfonates resulted in anomalous migration of the simple epithelial keratins. Unlike SDS, the C-10 and C-11 alkyl sulfates and C-11 sulfonate resulted in gels in which the keratins were separated accurately with respect to their gene sequence-determined molecular weights. However, with these shorter chain alkyl sulfates and sulfonate, resolution was compromised, especially with respect to the high-molecular-weight polypeptides. The C-12 alkyl sulfate (SDS) and alkyl sulfonate provided the best resolution of polypeptides. Mixtures of C-11 sulfate and SDS resulted in gels with better sequence molecular weight estimates and high resolution. In addition, trace amounts of sodium tetradecyl sulfate/sodium heptadecyl sulfate in commercial SDS preparations had an effect on polypeptide resolution.  相似文献   

2.
The effects of amides and detergents on collagen to gelatin transition have been studied at neutral pH. Simple amides denature the protein. The substitution of H-atoms by the alkyl groups at the nonpolar end of amide increases the effectiveness of the compounds in destabilizing the collagen structure whereas substitution of the H-atom at the polar amide end shows marginal effects on the collagen transition. The capabilities of these reagents to denature collagen are much less pronounced than their effects on denaturing globular proteins. Anionic detergents are found to destabilize collagen at very low concentrations (below their cmc values). In this respect, the effects of the detergents on collagen are comparable to the denaturing effects of the detergents on globular proteins. The effect of detergents increases with the increase in the length of the alkyl chain. The structure of the anion in the detergent is also important as seen from the lower potency of the sulfonate containing detergent compared to the sulfate containing detergent in denaturing collagen. Cationic and nonionic detergents do not denature collagen.  相似文献   

3.
Caged non-ionic detergents, comprised of polar oligo(ethylene glycol) and non-polar alkyl chains joined by a photocleavable ortho-nitrobenzyl sulfonate linker have been synthesized and characterized. The light-triggered transformation of such chameleon surfactant from a charge-neutral into a charged form offers great potential to improve 2-D gel electrophoretic separation of complex protein mixtures.  相似文献   

4.
Microbial Degradation of the Sulfonate of Dodecyl Benzene Sulfonate   总被引:4,自引:3,他引:1       下载免费PDF全文
It has been observed that the sulfonate portion of alkyl benzene sulfonate (ABS) will undergo microbial attack in certain pure and mixed cultures if an energy source, such as glucose, is available. The evidence for this is provided by the stoichiometric relationship between the reduction of ABS concentration and the appearance of inorganic sulfur compounds.  相似文献   

5.
Summary Of several different methods tried for the extraction of phycocyanin (PC) from the cyanobacterium Spirulina, treatment with 1800 Units / ml lysozyme and 100 ppm linear alkyl benzene sulfonate afforded good PC yield with high specific content, resulting in 66 and 98% recovery of PC, respectively.  相似文献   

6.
An enzyme desulfonating anionic alkyl benzene sulfonate (ABS) surfactants was isolated from Pseudomonas alcaligenes TR and purified. The physicochemical and catalytic characteristics of the enzyme were studied. The kinetic constants of ABS desulfonation were determined and shown to depend on the length of a hydrocarbon radical. The molecular mass of the enzyme was found to be close to 60,000.  相似文献   

7.
1. The commonly used detergents have a poisonous effect, which is due to the non-polar-polar configuration of their organic anion. The non-polar organophilic half of the ion is built up by a long chain of alkyl radicals (8 to 18 carbon atoms), the polar hydrophilic half by a sulfonate or sulfate. If brought into contact with the organic surface membrane of a cell, this structure, due to the strong attachment of the alkyl chains to its surface, and due to the pull of the hydrophilic part towards the surrounding water, is subjected to a heavy stress terminating in tearing to pieces the membrane (by denaturing and loosening the membrane components; bacteriolysis, cytolysis). Correspondingly, with frog muscle, one end of which has been treated with the detergent solution, an irreversible negative injury potential is produced. 2. Applying, instead, the compounds bearing short chains of alkyl radicals (1 to 6 carbon atoms), producing less stress on the membrane and correspondingly a slighter derangement of its architecture, a reversible positive resting potential appears. This is interpreted to be the effect of the non-polar part of the anion, which, due to its surface activity, intrudes into the pores of the membranes, notwithstanding the negative charge of their walls. 3. The short chained detergents seem to be replaceable by various organic "semidetergents," the organophilic behavior of their anion being represented by a slight chemical affinity (NH2), the hydrophilic by the effect of a carboxyl group (COO) instead of sulfate or sulfonate. The effect of the semidetergents on muscle is a positive reversible potential. Their physiological significance may be visualized as a functional activation.  相似文献   

8.
The detergents, alkyltrimethylammonium bromide, N-alkyl-N, N-dimethyl-3-ammonio-1-propanesulfonate (zwittergent), alkane sulfonate, alkylsulfate, alkyl-beta-D-glucopyranoside, alkyl-beta-D-maltoside, dodecanoyl-N-methylglucamide, polyethylene glycol monoalkyl ether and Triton X-100, all produce a concentration-dependent acceleration of the slow passive transbilayer movement of NBD-labeled phosphatidylcholine in the human erythrocyte membrane. Above a threshold concentration, which was well below the CMC and characteristic for each detergent, the flip rate increases exponentially upon an increase of the detergent concentration in the medium. The detergent-induced flip correlates with reported membrane-expanding effects of the detergents at antihemolytic concentrations. From the dependence of the detergent concentration required for a defined flip acceleration on the estimated membrane volume, membrane/water partition coefficients for the detergents could be determined and effective detergent concentrations in the membrane calculated. The effective membrane concentrations are similar for most types of detergents but are 10-fold lower for octaethylene glycol monoalkyl ether and Triton X-100. The effectiveness of a given type of detergent is rather independent of its alkyl chain length. Since detergents do not reduce the high temperature dependence of the flip process the detergent-induced flip is proposed to be due to an enhanced probability of formation of transient hydrophobic structural defects in the membrane barrier which may result from perturbation of the interfacial region of the bilayer by inserted detergent molecules.  相似文献   

9.
Pseudomonas testosteroni H-8 oxidizes certain lower alkylbenzene sulfonates at rates inversely related to the length of the alkyl group. Appreciable Q(O)2 values were observed for benzene sulfonate (BS), toluene sulfonate (TS), and ethylbenzene sulfonate (EBS), but not for propylbenzene sulfonate (PS) and higher homologues. Catechol oxidation was catalyzed by a constitutive catechol-2,3-oxygenase (EC 1.99.2.a). Yellow meta cleavage products accumulated when BS-grown cells were exposed to catechol, 4-methylcatechol, 3-methylcatechol, EBS and PS, but not BS or TS. Traces of a yellow metabolite (probably 2-hydroxymuconic semialdehyde) were detectable during growth on BS. PS completely inhibited growth on BS, but not on L-leucine or nutrient broth. Also, PS antagonized respiration on BS and catechol, but not glutamate, the extent of inhibition being directly related to PS concentration. Formation of a meta cleavage product from PS, and inhibition of catechol oxidation by PS, suggested that the actual inhibitor may not be PS itself, but a metabolite.  相似文献   

10.
Degradation of Alkyl Benzene Sulfonate by Pseudomonas Species   总被引:5,自引:3,他引:2       下载免费PDF全文
Pseudomonas sp. HK-1 showed a direct relation between the concentration of alkyl benzene sulfonate (ABS) supplied and cell yields. Since growth on ABS alone did not occur, it was necessary to correlate the total energy obtained by the cells to the ABS concentration when glucose was supplied in a limiting concentration. Several types of metabolic attack in addition to the sulfonate removal were noted: (i) side-chain utilization as indicated by the production of tertiarybutyl alcohol and isopropanol and (ii) ring metabolism as indicated by the presence of phenol, catechol, mandelic acid, benzyl alcohol, and benzoic acid in spent growth media. Utilization of ABS was greatly enhanced by the presence of phenol. This enhancement suggests co-metabolism and that limited concentrations of phenolic products derived from ABS must be accumulated to get active metabolism of the ABS molecule.  相似文献   

11.
Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of recombinant tau can be induced by treatment with various agents, including phosphotransferases, polyanionic compounds, and fatty acids. Here we characterize the structural features required for the fatty acid class of tau fibrillization inducer using recombinant full-length tau protein, arachidonic acid, and a series of straight chain anionic, cationic, and nonionic detergents. Induction of measurable tau fibrillization required an alkyl chain length of at least 12 carbons and a negative charge consisting of carboxylate, sulfonate, or sulfate moieties. All detergents and fatty acids were micellar at active concentrations, due to a profound, taudependent depression of their critical micelle concentrations. Anionic surfaces larger than detergent micelles, such as those supplied by phosphatidylserine vesicles, also induced tau fibrillization with resultant filaments originating from their surface. These data suggest that anionic surfaces presented as micelles or vesicles can serve to nucleate tau fibrillization, that this mechanism underlies the activity of fatty acid inducers, and that anionic membranes may serve this function in vivo.  相似文献   

12.
The structural study of membrane proteins requires detergents that can effectively mimic lipid bilayers, and the choice of detergent is often a compromise between detergents that promote protein stability and detergents that form small micelles. We describe lipopeptide detergents (LPDs), a new class of amphiphile consisting of a peptide scaffold that supports two alkyl chains, one anchored to each end of an alpha-helix. The goal was to design a molecule that could self-assemble into a cylindrical micelle with a rigid outer hydrophilic shell surrounding an inner lipidic core. Consistent with this design, LPDs self-assemble into small micelles, can disperse phospholipid membranes, and are gentle, nondenaturing detergents that preserve the structure of the membrane proteins in solution for extended periods of time. The LPD design allows for a membrane-like packing of the alkyl chains in the core of the molecular assemblies, possibly explaining their superior properties relative to traditional detergents in stabilizing membrane protein structures.  相似文献   

13.
Embryos, larvae and fry of the cyprinidontid Rivulus cylindraceus, subjected to sublethal concentrations of the branched alkyl benzene sulfonate TBS, were investigated with respect to mortality rates, deformities, hatching and activity (frequency of heart pulsation, pectoral fin beating and body movements of the embryos, swimming behaviour and activity of larvae and fry). If environmental conditions are optimal, sublethal concentrations seem to have no effect on an entire larval or young fish stock. On the other hand, if other stressing environmental factors of natural or human origin accompany them, such as lack of nutritional supply, an effect on a stock is possible at low sublethal concentrations.  相似文献   

14.
15.
p-Diazonium benzene sulfonate reacts with at least two chloroplast membrane components on the reducing side of Photosystem I leading to inhibition of electron flow from the Photosystem I primary acceptor (X) to ferredoxin, and inhibiting the function of bound ferredoxin-NADP+ reductase. While some inhibition of these two components attends p-diazonium benzene sulfonate treatment in the dark, a much more severe inhibition results when p-diazonium benzene sulfonate is given to light-energized membranes.Of particular interest is that electron flux through Photosystem II (3-(3,4-dichlorophenyl)-1, 1-dimethylurea sensitive) is required for potentiating the light-dependent p-diazonium benzene sulfonate inhibition, cyclic electron flow around Photosystem I not being an effective potentiator. We interpret these data as due to Photosystem II-driven conformational changes unmasking additional diazoreactive sites in the bound membrane components.  相似文献   

16.
Most commonly used surfactants were found to be inhibitors of partially purified rat brain protein kinase C at or above their critical micellar concentrations (CMC). These include sodium lauryl sulfate, deoxycholate, octyl glucoside, dodecyl trimethylammonium bromide, linear alkylbenzene sulfonate and Triton X-100. Several detergents, including the nonionic surfactants digitonin and Neodol-12 (ethoxylated alcohol), did not inhibit protein kinase C activity, even at concentrations greater than their CMC, while the anionic surfactant, AEOS-12 (ethoxylated alcohol sulfate), inhibited enzyme activity only slightly (less than 8%). Since these latter surfactants have little or no inhibitory effect on protein kinase C, they may be of value in solubilizing cells and tissues for the determination of enzyme activity in crude extracts. Among the detergents tested, sodium lauryl sulfate and linear alkylbenzene sulfonate significantly stimulated protein kinase C activity in the absence of phosphatidylserine and calcium. This was found to be dependent on the presence of histone in the protein kinase C assay. These detergents failed to stimulate protein kinase C activity when endogenous proteins in the partially purified rat brain extracts were used as the substrate. Our results indicate that activity of protein kinase C can be modified by the conditions of the assay and by the detergents used to extract the enzyme.  相似文献   

17.
Summary Dielectric measurements were made on suspensions of yeast cells treated with two homologous series of sodium alkyl (C8, C10, C12, C14) sulfonates and alkyl (C8, C10, C12, C14, C16, C18) benzyl dimethyl ammonium chlorides over a frequency range of 10 kHz to 100 MHz. Dielectric dispersions observed for the suspensions of intact yeast cells are found to be reduced by treatment with these detergents, the reduction being accompanied by a decrease in packed volume of the cells and by a leakage of intracellular compounds. The reduction of dielectric dispersions is considered to be caused by a decrease in volume of the cells in suspensions and an increase in conductivity of the cell membranes. An effect of the alkyl chain length of the detergents on the reduction of dielectric dispersions is also examined for these ionic detergents. The reducing effect shows the maximum at the alkyl chain, C14 for sodium alkyl sulfonates and at C16 for alkyl benzyl dimethyl ammonium chlorides. These results are consistent with hemolysis and bactericidal activity.  相似文献   

18.
ABSTRACT DNA in macro- and micronuclei of Tetrahymena pyriformis treated with linear alkyl benzene sulfonate (LAS) and sodium pentachlorophenate (PCP-Na) were determined by microspectrophotometry. The effects on rate of formation of macronuclear DNA extrusion bodies were also studied. We found DNA content of micronuclei in 0.14 ppm LAS and 0.9 ppb PCP-Na was lower than in that of the control, and LAS was able to increase the formation rate of macronuclear DNA extrusion bodies (the formation rate was 54% in 11.3 ppm LAS and 25.6% in 16.7 ppm dichromate). We concluded that 0.14 ppm LAS (below the maximum acceptable toxicant concentration) was genotoxic, whereas 0.014 ppm LAS was not. Dichromate 0.05 ppm and 0.9 ppb PCP-Na, equal to and below the maximum acceptable toxicant concentration, respectively, were potentially genetoxic.  相似文献   

19.
DNA in macro- and micronuclei of Tetrahymena pyriformis treated with linear alkyl benzene sulfonate (LAS) and sodium pentachlorophenate (PCP-Na) were determined by microspectrophotometry. The effects on rate of formation of macronuclear DNA extrusion bodies were also studied. We found DNA content of micronuclei in 0.14 ppm LAS and 0.9 ppb PCP-Na was lower than in that of the control, and LAS was able to increase the formation rate of macronuclear DNA extrusion bodies (the formation rate was 54% in 11.3 ppm LAS and 25.6% in 16.7 ppm dichromate). We concluded that 0.14 ppm LAS (below the maximum acceptable toxicant concentration) was genotoxic, whereas 0.014 ppm LAS was not. Dichromate 0.05 ppm and 0.9 ppb PCP-Na, equal to and below the maximum acceptable toxicant concentration, respectively, were potentially genotoxic.  相似文献   

20.
In a previous paper it has been shown that the nonpolar-polar anionic detergents can be divided into two main groups. One chemically characterized by a relatively long chain of non-polar alkyl groups, which in solution are in contact with one end of a muscle and, locally adhering to it, produce a permanent negative injury potential. This is generally accompanied by a loss of excitability. The second group, distinguished by a relatively short chain of non-polar alkyl groups acts reversibly, ordinarily preserves the excitability and, in contrast to the first group, produces locally a reverse positive potential. For reasons mentioned before, this appears likely to correspond to an increased activity. These concepts have been tested in this second paper. The measurements of the resting potentials of muscles have been supplemented by measurements on frog sciatics with the result that there are brought about, again by the detergents with long alkyl chains, regular irreversible negative resting potentials and with the short chain compounds reversible positive potentials are aroused. Furthermore, in addition there appeared the hardly expected result that muscle stimulated in the presence of short chain detergents responded with an even higher contraction. We have endeavored to explain this on the basis of general considerations concerning the physical chemistry of the excitatory process. More direct evidence of this rise of excitability under the influence of the short chain non-polar-polar detergents will be presented in the next papers on studies concerning chronaximetric measurements on nerve, referring particularly to the semidetergents, and concerning the effects of detergents in general upon the heart beat of a clam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号