首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The contribution of the cyanide-resistant, alternative pathway to plant mitochondrial electron transport has been studied using a modified aqueous phase on-line mass spectrometry-gas chromatography system. This technique permits direct measurement of the partitioning of electrons between the cytochrome and alternative pathways in the absence of added inhibitors. We demonstrate that in mitochondria isolated from soybean (Glycine max L. cv Ransom) cotyledons, the alternative pathway contributes significantly to oxygen uptake under state 4 conditions, when succinate is used as a substrate. However, when NADH is the substrate, addition of pyruvate, an allosteric activator of the alternative pathway, is required to achieve the same level of alternative pathway activity. Under state 3 conditions, when the reduction state of the ubiquinone pool is low, the addition of pyruvate allows the alternative pathway to compete with the cytochrome pathway for electrons from the ubiquinone pool when the cytochrome pathway is not saturated. These results provide direct experimental verification of the kinetics consequences of pyruvate addition on the partitioning of electron flow between the two respiratory pathways. This distribution of electrons between the two unsaturated pathways could not be measured using conventional oxygen electrode methods and illustrates a clear advantage of the mass spectrometry technique. These results have significant ramifications for studies of plant respiration using the oxygen electrode, particularly those studies involving intact tissues.  相似文献   

2.
Atkin OK  Villar R  Lambers H 《Plant physiology》1995,108(3):1179-1183
To test the hypothesis that the cytochrome pathway is not invariably saturated when the alternative pathway is engaged, we titrated root respiration of several species with KCN (an inhibitor of the cytochrome pathway), both in the absence and presence of an inhibitor of the alternative pathway (salicylhydroxamic acid, SHAM). The slopes of the resultant KCN [rho] plots ([rho]cyt) were then used to determine whether the cytochrome pathway was saturated in each species. The species used were Festuca ovina ssp. ovina L., Phaseolus vulgaris L., and six Poa species (Poa pratensis L., Poa compressa L., Poa trivialis L., Poa alpina L., Poa costiniana Vick., and Poa fawcettiae Vick.). Although the cytochrome pathway was saturated in a number of species (i.e. [rho]cyt values were 1.0), several others exhibited [rho]cyt values of less than 0.5. Alternative pathway capacity correlated negatively with [rho]cyt, with [rho]cyt values of less than 1.0 occurring in tissues in which the alternative pathway capacity was greater than 25 to 30% of total respiration. The species that did not show full engagement of the cytochrome pathway rarely exhibited SHAM inhibition in the absence of KCN. We conclude that this lack of SHAM inhibition is not due to a lack of alternative pathway engagement but rather to the diversion of electrons from the alternative pathway to the unsaturated cytochrome path following the addition of SHAM.  相似文献   

3.
The regulation of alternative oxidase activity by the effector pyruvate was investigated in soybean (Glycine max L.) mitochondria using developmental changes in roots and cotyledons to vary the respiratory capacity of the mitochondria. Rates of cyanide-insensitive oxygen uptake by soybean root mitochondria declined with seedling age. Immunologically detectable protein levels increased slightly with age, and mitochondria from younger, more active roots had less of the protein in the reduced form. Addition of pyruvate stimulated cyanide-insensitive respiration in root mitochondria, up to the same rate, regardless of seedling age. This stimulation was reversed rapidly upon removal of pyruvate, either by pelleting mitochondria (with succinate as substrate) or by adding lactate dehydrogenase with NADH as substrate. In mitochondria from cotyledons of the same seedlings, cyanide-insensitive NADH oxidation was less dependent on added pyruvate, partly due to intramitochondrial generation of pyruvate from endogenous substrates. Cyanide-insensitive oxygen uptake with succinate as substrate was greater than that with NADH, in both root and cotyledon mitochondria, but this difference became much less when an increase in external pH was used to inhibit intramitochondrial pyruvate production via malic enzyme. Malic enzyme activity in root mitochondria declined with seedling age. The results indicate that the activity of the alternative oxidase in soybean mitochondria is very dependent on the presence of pyruvate: differences in the generation of intramitochondrial pyruvate can explain differences in alternative oxidase activity between tissues and substrates, and some of the changes that occur during seedling development.  相似文献   

4.
Glutamate Oxidation by Soybean Cotyledon and Leaf Mitochondria   总被引:1,自引:0,他引:1  
Mitochondria purified from cotyledons of soybean seedlings fiveto ten days old have the capacity to rapidly oxidize glutamate(measured as glutamate dependent oxygen consumption). This capacitywas greatest at ten days after planting but was very low priorto emergence of cotyledons from the vermiculite and during senescence.Solubilized glutamate dehydrogenase activity, on the other hand,was substantial at two days after planting, peaked at sevendays, then declined and rose again during senescence. It issuggested that mitochondrial glutamate oxidation plays a rolein reserve mobilization and amino acid metabolism during seedlinggrowth. Leaf mitochondria and those from senescing cotyledonscould not sustain rapid rates of glutamate oxidation despiteready oxidation of other substrates and high solubilized glutamatedehydrogenase activity, suggesting an alternative role for theenzyme in these tissues. Possible controlling factors are discussed. 2 Present address, Garvan Institute, Darlinghurst, N. S. W.,Australia. 3 Permanent address, Department de Biologia Vegetal, Facultatde Biologia, Universitat de Barcelona, Barcelona, Spain. (Received May 6, 1988; Accepted August 3, 1988)  相似文献   

5.
In Arum and soybean (Glycine max L.) mitochondria, the dependence of the alternative oxidase activity on the redox level of ubiquinone, with NADH and succinate as substrates, was studied, using a voltametric procedure to measure the ubiquinone redox poise in the mitochondrial membrane. The results showed that when the enzyme was activated by pyruvate the relationship between the alternative oxidase rate and the redox state of the ubiquinone pool was the same for both NADH and succinate oxidations. In the absence of pyruvate the alternative oxidase had an apparent lower affinity for ubiquinol. This was more marked with NADH than with succinate and was possibly due to pyruvate production during succinate oxidation or to an activation of the alternative oxidase by succinate itself. In Arum spadix (unlike soybean cotyledon) mitochondria, succinate oxidation via the alternative oxidase maintained the ubiquinone pool in a partially reduced state (60%), whereas NADH oxidation kept it almost completely reduced. Previous data comparing mitochondria from thermogenic and nonthermogenic tissues have not examined the full range of ubiquinone redox levels in both tissues, leading to the suggestion that the activity of alternative oxidase for Arum was different from nonthermogenic tissues. When the complete range of redox states of ubiquinone is used and the oxidase is fully activated, the alternative oxidase from thermogenic tissue (Arum) behaves similarly to that of nonthermogenic tissue (soybean).  相似文献   

6.
Warburg showed in 1929 that the photochemical action spectrum for CO dissociation from cytochrome c oxidase is that of a heme protein. Keilin had shown that cytochrome a does not react with oxygen, so he did not accept Warburg's view until 1939, when he discovered cytochrome a 3. The dinuclear cytochrome a 3-CuB unit was found by EPR in 1967, whereas the dinuclear nature of the CuA site was not universally accepted until oxidase crystal structures were published in 1995. There are negative redox interactions between cytochrome a and the other redox sites in the oxidase, so that the reduction potential of a particular site depends on the redox states of the other sites. Calculated electron-tunneling pathways for internal electron transfer in the oxidase indicate that the coupling-limited rates are 9×105 (Cu A a) and 7×106 s–1 (a a 3); these calculations are in reasonable agreement with experimental rates, after corrections are made for driving force and reorganization energy. The best CuA-a pathway starts from the ligand His204 and not from the bridging sulfur of Cys196, and an efficient a-a 3 path involves the heme ligands His378 and His376 as well as the intervening Phe377 residue. All direct paths from CuA to a 3 are poor, indicating that direct CuA a 3 electron transfer is much slower than the CuA a reaction. The pathways model suggests a means for gating the electron flow in redox-linked proton pumps.  相似文献   

7.

Background

Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress.

Results

Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress.

Conclusion

These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.  相似文献   

8.
The steady-state activity of the two quinol-oxidizing pathways of Acanthamoeba castellanii mitochondria, the phosphorylating cytochrome pathway (i.e. the benzohydroxamate(BHAM)-resistant respiration in state 3) and the alternative oxidase (i.e. the KCN-resistant respiration), is shown to be fixed by ubiquinone (Q) pool redox state independently of the reducing substrate (succinate or exogenous reduced nicotinamide adenine dinucleotide (NADH)), indicating that the active Q pool is homogenous. For both pathways, activity increases with the Q reduction level (up to 80%). However, the cytochrome pathway respiration partially inhibited (about 50%) by myxothiazol decreases when the Q reduction level increases above 80%. The decrease can be explained by the Q cycle mechanism of complex III. It is also shown that BHAM has an influence on the relationship between the rate of ADP phosphorylation and the Q reduction level when alternative oxidase is active, and that KCN has an influence on the relationship between the alternative oxidase activity and the Q reduction level. These unexpected effects of BHAM and KCN observed at a given Q reduction level are likely due to functional connections between the two pathways activities or to protein–protein interaction.  相似文献   

9.
Mitochondria from four plant species showing normal (Arum maculatum L., Arum italicum Mill., Sauromatum guttatum Schott) or induced (Solanum tuberosum L.) resistance to cyanide were submitted to temperature treatments up to 90 min at 45°C. The activity of the alternative, cyanide-resistant electron transport pathway was specifically and deeply altered by temperature treatments. Hydrogen sulfide was released in direct proportion to the reduction of activity of the alternative pathway. Only a small fraction (? 20%) of the total labile sulfide content of the mitochondria was associated with the operation of this pathway. In cyanide-resistant mitochondria, the cytochrome pathway was much more resistant to thermal inactivation than the alternative pathway. On the contrary, in cyanide-sensitive mitochondria (with no alternative pathway) the cytochrome pathway was highly sensitive to temperature treatments. These results indicate that the presence of a cyanide-resistant alternative pathway is correlated with a higher degree of resistance to thermal denaturation of the cytochrome pathway. They also strongly suggest that iron-sulfur proteins are regular components of the alternative pathway.  相似文献   

10.
11.
12.
13.
Cosmid pR4Cl is a derivative of multicopy plasmid pIJ365 which has an insertion of the cos (cohesive end site) region of actinophage R4 [T. Morino, H. Takahashi and H. Saito, Mol. Gen. Genet., 198, 228 (1985)]. When the donor R4 phage was propagated in S. lividans carrying the plasmid, the phage lysate contained transducing particles which encapsulated head-to-tail concatemers of the plasmid DNA. These particles could mediate transfer of the plasmid at a high frequency. We examined conditions that gave a maximum transduction frequency of cosmid pR4Cl. Conditions which depress R4 phage propagation, such as incubation of recipient S. parvulus at a high temperature, improved the frequency. Obviously such conditions minimized the lethal effect of viable phage propogation. The highest transduction frequency obtained so far was around 3 × 10-3 transductants per infected phage when S. lividans was used as the recipient. This was about 30 per cent of the cosmid transducing particles estimated from the cosmid DNA content in the transducing lysate. The significance of cosmid transduction for gene manipulation in Streptomyces strains is also discussed.  相似文献   

14.
The activity of the cyanide-resistant alternative oxidase (pathway) of Yarrowia lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

15.
In addition to the linear electron flow, a cyclic electron flow (CEF) around photosystem I occurs in chloroplasts. In CEF, electrons flow back from the donor site of photosystem I to the plastoquinone pool via two main routes: one that involves the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (PGR) and one that is dependent of the NADH dehydrogenase-like complex. While the importance of CEF in photosynthesis and photoprotection has been clearly established, little is known about its regulation. We worked on the assumption of a redox regulation and surveyed the putative role of chloroplastic thioredoxins (TRX). Using Arabidopsis (Arabidopsis thaliana) mutants lacking different TRX isoforms, we demonstrated in vivo that TRXm4 specifically plays a role in the down-regulation of the NADH dehydrogenase-like complex-dependent plastoquinone reduction pathway. This result was confirmed in tobacco (Nicotiana tabacum) plants overexpressing the TRXm4 orthologous gene. In vitro assays performed with isolated chloroplasts and purified TRXm4 indicated that TRXm4 negatively controls the PGR pathway as well. The physiological significance of this regulation was investigated under steady-state photosynthesis and in the pgr5 mutant background. Lack of TRXm4 reversed the growth phenotype of the pgr5 mutant, but it did not compensate for the impaired photosynthesis and photoinhibition sensitivity. This suggests that the physiological role of TRXm4 occurs in vivo via a mechanism distinct from direct up-regulation of CEF.In plant thylakoids, photosynthesis involves a linear electron flow (LEF) from water to NADP+ via PSII, cytochrome b6/f, PSI, and soluble carriers. LEF produces NADPH and generates a transthylakoidal electrochemical proton gradient that drives the synthesis of ATP. Besides LEF, cyclic electron flow (CEF) can also occur, involving only PSI (for review, see Johnson, 2011; Kramer and Evans, 2011). These additional reactions include two main distinct pathways involving either the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (Munekage et al., 2002; DalCorso et al., 2008) or the NADH dehydrogenase-like complex (NDH; for review, see Battchikova et al., 2011; Ifuku et al., 2011). The functioning of either CEF pathway, which generates a pH gradient ΔpH without any accumulation of NADPH, is thought to achieve the appropriate ATP/NADPH balance required for the biochemical needs of the plant, especially under certain environmental conditions such as low CO2 (Golding and Johnson, 2003), heat (Clarke and Johnson, 2001), cold (Clarke and Johnson, 2001), drought (Golding and Johnson, 2003; Kohzuma et al., 2009), high light (Munekage et al., 2004), or dark-to-light transitions (Joliot and Joliot, 2005; Fan et al., 2007). CEF-generated ΔpH is also involved in photoprotection owing to the down-regulation of PSII via nonphotochemical quenching (Munekage et al., 2004; Takahashi et al., 2009). Very recently, the role of the PGR5 protein as a regulator of LEF has been established. It has proved to be essential in the protection of PSI from photodamage (Suorsa et al., 2012).The two cyclic pathways are redundant (Munekage et al., 2004), sharing ferredoxin (Fd) as a common stromal electron donor (Yamamoto et al., 2011) and electron carriers from plastoquinone (PQ) to PSI with LEF. Thus, LEF and either of the CEF pathways may be in competition. The molecular events that allow CEF to challenge LEF remain enigmatic, particularly when considering that the conditions that require CEF are also those under which LEF is in excess. Efforts to understand the appropriate functioning of CEF have led to the proposition of several models segregating cyclic and linear pathways at a structural level (for review, see Eberhard et al., 2008; Cardol et al., 2011; Johnson, 2011; Rochaix, 2011). According to the restricted diffusion model, founded on the uneven distribution of the photosynthetic protein complexes in the thylakoids, there is little competition between CEF and LEF, as CEF occurs in stroma lamellae where PSI is concentrated while LEF takes place in the grana stacks. In line with the supercomplex model, whose relevance was demonstrated in the microalga Chlamydomonas reinhardtii, CEF happens within tightly bound supercomplexes containing PSI, with its own light-harvesting complex (LHCI), the PSII light-harvesting complex (LHCII), cytochrome b6/f, Fd, Fd NADP reductase (FNR), and the integral membrane protein PGRL1 (Iwai et al., 2010). In higher plants, an association between NDH and PSI subunits suggests the formation of such supercomplexes (Peng et al., 2009). The availability of FNR, found either free in the stroma or bound to the thylakoids (Zhang et al., 2001), has also been proposed to modulate partitioning between LEF and CEF (Joliot and Joliot, 2006; Joliot and Johnson, 2011). In addition, more dynamic models that illustrate competitive processes involved in the distribution of electrons between the cyclic and linear flows have been proposed. The competition between cytochrome b6/f and FNR for electrons from Fd could regulate the segregation between LEF and CEF (Breyton et al., 2006; Yamamoto et al., 2006; Hald et al., 2008). A few years ago, Joliot and Joliot (2006) suggested that the ATP/ADP ratio was one of the parameters that triggered on the transition between LEF and CEF. It was also established that the redox poise of chloroplast stroma contributed to the regulation of the photosynthetic pathway and played an important role in defining the extent of CEF. Breyton et al. (2006) scrutinized this redox regulation and established that the fraction of PSI complexes engaged in CEF could be modulated by changes in the stromal redox state. Overreduction of the NADPH pool was involved in the repartition between LEF and CEF (Joliot and Joliot, 2006). The NADPH/NADP+ ratio was proposed as a regulator of PGR-dependent CEF in vivo (Okegawa et al., 2008).All the published data supporting a role for the redox status in the regulation of CEF urged us to investigate a putative role of thioredoxins (TRX) in the regulation of CEF. TRX are ubiquitous disulfide reductases regulating the redox status of target proteins (for review, see Lemaire et al., 2007; Meyer et al., 2009). In chloroplast, TRX mediate the light regulation of numerous enzymes, among which some belong to the Calvin cycle (for review, see Schürmann and Buchanan, 2008; Montrichard et al., 2009; Lindahl et al., 2011). Global proteomic approaches have revealed that well-known photosynthetic complex subunits may be partners of TRX, such as PsbO in PSII, plastocyanin, Rieske Fe-S protein in cytochrome b6/f, and PsaK and PsaN in PSI (for review, see Montrichard et al., 2009; Lindahl et al., 2011). Furthermore, regarding the regulation of photosynthesis, TRX have also been involved in state transitions (Rintamäki et al., 2000; Buchanan and Balmer, 2005), and their participation in the control of the redox poise of the electron transport chain has also been suggested (Johnson, 2003).In this work, we have investigated the possible role of TRX in the regulation of CEF. Using Arabidopsis (Arabidopsis thaliana) mutants with altered expression of genes encoding different plastid TRX, we have established in vivo the inhibitor activity of TRXm4 on the NDH-dependent pathway for plastoquinone reduction. This result was confirmed in transplastomic tobacco (Nicotiana tabacum) plants overexpressing the TRXm4 orthologous gene. Moreover, in vitro assays performed with isolated chloroplasts indicated that TRXm4 negatively controls the PGR-dependent electron flow as well.  相似文献   

16.
The regulation of electron transport in pea (Pisum sativum L.) leaf mitochondria under state 4 conditions has been investigated by simultaneously monitoring oxygen uptake, the steady-state reduction level of ubiquinone, and membrane potential. Membrane potentials were measured using a methyltriphenylphosphonium electrode while a voltametric technique was used to monitor changes in the steady-state reduction levels of quinone. It was found that the addition of glycine to mitochondria oxidising malate in state 4 led to a marked increase in the rate of O2 uptake and increased both the membrane potential and reduction level of the quinone pool. Increases in the state 4 respiratory rate were attributed to both an increase in driving flux, due to increased Q-pool reduction, and in membrane potential. Due to the nonohmic behavior of the inner membrane, under these conditions, an increase in potential would result in a considerable rise in proton conductance. Measurement of dual substrate oxidation, in the presence of n-propylgallate, revealed that the increase in respiratory activity was not mediated by the alternative oxidase. Similar increases in membrane potential and the level of Q-pool reduction were observed even in the presence of rotenone suggesting that the rotenone-insensitive pathway is a constitutive feature of plant mitochondria and may play a role in facilitating rapid state 4 rates even in the presence of a high energy charge.  相似文献   

17.
Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA) content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS) staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP) fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data demonstrated that glycerol treatment altered endogenous levels of G3P, phosphate and ROS, affected auxin distribution and cell division in the root meristem, and eventually resulted in modifications of root development.  相似文献   

18.
The conditions for maximum O2 uptake by pea cotyledon mitochondriaoxidizing palmitate were established. It was found that CoASH,Mg2+, ATP, malate, and carnitine were necessary additions tothe incubation medium. It is suggested that carnitine combineswith palmitoylCoA to produce palmitoylcarnitine with the releaseof CoASH. The palmitoylcarnitine thus formed may penetrate themembranes of the mitochondria with greater ease than palmitoylCoA.  相似文献   

19.
Mitochondria, isolated from heterotrophic Euglena gracilis , have cyanide-resistant alternative oxidase (AOX) in their respiratory chain. Cells cultured under a variety of oxidative stress conditions (exposure to cyanide, cold, or H2O2) increased the AOX capacity in mitochondria and cells, although it was significant only under cold stress; AOX sensitivity to inhibitors was also increased by cold and cyanide stress. The value of AOX maximal activity reached 50% of total respiration below 20 degrees C, whereas AOX full activity was only 10-30% of total respiration above 20 degrees C. The optimum pH for AOX activity was 6.5 and for the cytochrome pathway was 7.3. GMP, AMP, pyruvate, or DTT did not alter AOX activity. The reduction level of the quinone pool was higher in mitochondria from cold-stressed than from control cells; furthermore, the content of reduced glutathione was lower in cold-stressed cells. Growth in the presence of an AOX inhibitor was not affected in control cells, whereas in cold-stressed cells, growth was diminished by 50%. Cyanide diminished growth in control cells by 50%, but in cold-stressed cells this inhibitor was ineffective. The data suggest that AOX activity is part of the cellular response to oxidative stress in Euglena .  相似文献   

20.
Kinetics of dark decay of absorbance changes at 830 nm (830) was examined in thylakoids isolated from leaves of pea seedlings at various concentrations of exogenous NADPH or NADH. Absorbance changes were induced by far-red light to avoid electron donation from photosystem II. In the presence of either biological reductant, the kinetics of 830 decay reflecting dark reduction of 700+, the primary electron donor of photosystem I, was fitted by a single exponential term. The rate of 700+ reduction increased with the rise in the concentration of both NADPH and NADH. The values of K M and V max for 700+ reduction estimated from concentration dependences were 105 ± 21 M and 0.32/s for NADPH or 21 ± 8 M and 0.12/s for NADH. The rate of P700+ reduction by either NADPH or NADH significantly increased in the presence of rotenone, a specific inhibitor of chloroplast reductase. The value of V max was changed only in the presence of rotenone, whereas K m was practically unaffected. Unlike the chloroplasts of intact leaves, the only enzyme mediating the input of reducing equivalents from NADPH or NADH to the electron transport chain was concluded to be present in thylakoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号